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Neutron moderation land mine detection involves irradiating the ground with fast neutrons
and subsequently detecting the thermalized neutrons which return. This technique has been
studied since the 1950s, but only using non-imaging detectors. Without imaging, natural vari-
ations in moisture content, surface irregularities, and sensor height variations produce sufficient
false alarms to render the method impractical in all but the driest conditions. This paper
describes research to design and build a prototype land mine detector based on neutron moder-
ation imaging. After reviewing various neutron detector technologies, a design concept was
developed. It consists of a novel thermal neutron imaging system, a unique neutron source to
uniformly irradiate the underlying ground, and hardware and software for image generation
and enhancement. A proof-of-principle imager has been built, but with a point source offset
from the detector to roughly approximate a very weak uniform source at the detector plane.
Imagery from the detector of mine surrogates is presented. Realistic Monte Carlo simulations
were performed using the same two dimensional neutron imaging geometry as the detector in
order to assess its performance. The target-to-background contrast was calculated for various
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soil types and moisture contents, explosive types and sizes, burial depths, detector standoffs,
and ground height variations. The simulations showed that the neutron moderation imager is
feasible as a land mine detector in a slow scanning or confirmation role and that image quality
should be sufficient to significantly improve detector performance and reduce false alarm rates
compared to non-imaging albedo detection, particularly in moist soils, where surface irregu-
larities exist and when the sensor height is uncertain. Performance capability, including spatial
resolution and detection times, was estimated.

Key Words: Neutron moderation imaging, neutron albedo imaging, land mine detection.

1. Introduction

Detection of land mines using nuclear techniques has been studied
exhaustively since the 1950s. Virtually every conceivable nuclear reaction
has been examined, but after considering such factors as penetration, sensi-
tivity, selectivity, size, weight, and power, only a very few have potential for
land mine detection [1,2,3,4]. Lateral migration X-ray backscatter imaging
[5] and thermal neutron activation (TNA) are among the most promising
for vehicle mounted applications and are still being actively investigated.
The only known nuclear-based land mine detector that is commercially
available is a production version of a Californium-based thermal neutron
activation detector [6,7] developed as a confirmation sensor for the
Canadian Improved Landmine Detection System (ILDS), a vehicle-
mounted, multisensor, land mine detector system [8]. A prototype neutron
generator-based version is now undergoing testing [9]. The latter systems
are restricted to detecting antitank (AT) and large antipersonnel (AP) land
mines. The number of nuclear reactions having potential for adaptation to
handheld, antipersonnel land mine detection is even smaller. These typically
involve the use of larger cross sections and more efficient detectors which
allow relatively weak sources to be used. This allows a decrease in size and
weight of shielding for electronics and personnel. Among them are uncolli-
mated X-ray backscatter imaging [10] and neutron moderation imaging. The
latter is the subject of this paper.

There are few candidate confirmation detectors for AP mines. Uncol-
limated X-ray backscatter imaging detectors for land mine detection are
still at the simulation stage. A prototype electrical impedance tomography
detector has produced low spatial resolution mine images in several seconds
[11] in some soil types. However, it requires probes to be pushed into the
ground over the mine, making it potentially hazardous to use. Nuclear
quadrupole resonance, a radiofrequency resonant absorption technique, can
in principle give a signal that is characteristic of the explosive filling. It
has demonstrated its ability to detect RDX-filled mines in field trials [12].
Detection of TNT-filled mines, which constitute >90% of all land mines, is
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much more difficult, since the signal-to-noise ratio is an order of magnitude
smaller. Other things, such as the piezoelectric effect from quartz bearing
soil, magnetic soil, temperature dependence of resonant frequency, and
depth dependence of response, affect the signal quality and ability to detect.
By far the biggest problem is radiofrequency interference, since the signals
are minuscule and the resonant frequencies occur in the AM radio wave-
band for TNT. Presently, RF noise can only be reduced by recording noise
in a base station and applying compensation algorithms off line. Even then,
TNT-filled AP mines are not reliably detected. It will be seen that neutron
moderation has none of these problems. Its chief source of interference is
ground water.

Neutron moderation or thermalization without imaging has been
studied for land mine detection in some detail [1,3]. Explosives contain 2–3%
hydrogen by weight, while soils may contain from 0% to over 50% hydrogen
[4]. Thus the presence of an anomaly in the measurement of hydrogen den-
sity may be used to imply the presence of a land mine. The method involves
irradiating an area with fast neutrons and detecting the subsequently moder-
ated and returned slow neutrons. Measurement of the albedo (ratio of num-
ber of slow neutrons returned from the soil to the number of incident fast
neutrons) is then used as an indicator of the presence of a mine. The chief
limiting factor in the target-to-clutter ratio is hydrogen in ground water.
The hydrogen densities of the soil and the land mine will be equal when the
gravimetric percentage of water is between 18 and 27%, and hence mines
cannot be detected in this range. In practice, moisture contents in excess of
10% have rendered this detection technique ineffective in the past. Other
factors which can limit the target-to-clutter ratio are ground surface irregu-
larities and detector height variations.

Research in neutron moderation detection of land mines has been
conducted since the early 1950s and has continued through to the 1990s,
mainly for the US Army. Isotopic sources, such as Po–Be and Cf, with
typical outputs of 106 n�s, have been used. Accelerator sources have
employed different reactions to yield neutron energies of 1.1, 2.8, and
14.8 MeV. Detectors have included BF3 and 3He proportional counters and
6LiI crystals wrapped in Cd. BF3 or 3He multiwire proportional counters
for imaging have been proposed [1], but were never employed in this role.

At a workshop in 1985 to identify nuclear techniques suitable for
land mine detection [3], experts placed neutron moderation among the top
three techniques, after X-ray backscatter imaging and thermal neutron cap-
ture gamma rays (TNA). In spite of this, neutron moderation has not been
very successful to date, while TNA is now a fielded confirmation detection
technology for a vehicle-mounted system [6,7,8]. The reason for this is that
natural variations in hydrogen content in the soil, chiefly due to water, and
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surface irregularities and detector height variations all effect the albedo con-
trast. This produces enough false alarms to make the neutron moderation
method impractical in all but the driest conditions. For instance, at the
invitation of the US government, DRDC Suffield scientists participated in
testing of a neutron moderation detector, built by SAIC US, at 29 Palms,
CA in December, 1993. The system, which consisted of four 3He detectors
and a weak (∼106 n�s) 252Cf source, produced an unacceptably high false
alarm rate, even though the environment was a flat, clean section of dry
desert. Nevertheless, there are a few groups currently involved in research
on neutron moderation detection of land mines. Frank Brooks, University
of Capetown [13] and Carel W.E. van Eijk, Delft University [14], both have
programs of simulation and experimentation. Richard Craig, Pacific
Northwest National Laboratory, has been investigating the use of a time-
tagged neutron source to help discriminate between soil and explosives. All
three groups have focused on nonimaging detection.

One method of reducing false alarms is to spatially image the neu-
trons coming from the ground. Although this has been proposed previously
[1], to date it does not appear to have been tried. This paper describes
research to determine the feasibility and practicality of designing and build-
ing a land mine detector based on neutron moderation imaging. A design
concept for the imager will be presented. It consists of a novel thermal
neutron imaging system, a unique neutron source to uniformly irradiate the
underlying ground and hardware and software for image generation and
enhancement. A proof-of-principle imager has been built, but with a point
source offset from the detector to roughly approximate the weak uniform
source at the detector plane that will ultimately be used. Preliminary
imagery from the detector of land mine surrogates will be presented.

Realistic Monte Carlo simulations were performed using the same
two dimensional neutron imaging geometry as the detector in order to assess
its performance. The target-to-background contrast was calculated for vari-
ous relevant parameters, such as soil type and moisture content, explosive
type and mass, mine burial depth, detector standoff and ground height vari-
ations due to surface roughness. Performance capability, including spatial
resolution and detection times, was estimated from the model. The simu-
lations and their results will be described.

The simulations and images show that the neutron moderation
imager is feasible as a land mine detector in a slow scanning or confirmation
role and that image quality should be sufficient to significantly improve
detector performance and reduce false alarm rates compared to non-imag-
ing albedo detection, particularly in moist soils, where surface irregularities
exist and when the sensor height is uncertain.
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2. Instrument Design

A variety of neutron detector technologies were reviewed, taking into
account the requirement for adequate spatial imaging resolution, ease of
use, minimum weight and acceptable system cost. The most appropriate
technology for the application was selected to form the basis of the concep-
tual design which is described in this section.

A photograph of the detection unit for the prototype instrument is
shown in Figure 1. The detector�source assembly is a 50 cmB50 cm light-
tight housing containing a planar neutron scintillation imager and a co-
planar neutron source. The imager is coupled via a fiber optics bundle to a
photomultiplier and processing electronics situated in a box attached to the
top of the detector�source assembly. Instrument mass is roughly 13 kg and
power consumption is about 10 W, supplied by batteries.

In addition to the detection unit there is a remote analysis unit (com-
puter) connected by a wireless or hardwired serial link. This separation of

Figure 1. Photograph of the top of the neutron moderation imager detection unit, removed
from its light-tight shield. It consists of a neutron-sensitive scintillation screen sandwiched
between a crossed (X, Y) grid of position-sensing, wavelength shifting optical fibers and a
uniform sheet Californium source. Each optical fiber wraps back and forth parallel to itself in
the image plane to increase its effective path length. This can be seen as a series of Us along
the edges of the detector. The ends of the fibers can be seen exiting from the detector plane
and entering the multi-dynode photomultiplier tube which is used to decode neutron position.
A detailed description is given in Section 2.
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function is intended to minimize radiation exposure to the operator from
the albeit weak neutron source resident in the detection unit.

The two key components of the instrument are the thermal neutron
imager and a unique neutron source to uniformly irradiate the underlying
ground. These are discussed more fully in the next two subsections.

2.1. Thermal Neutron Imager

A schematic diagram of a small portion (∼2 cmB∼2 cm) of the
detection unit is shown in Figure 2 and a block diagram of the instrument
electronics is shown in Figure 3. The imaging approach chosen was to use
a scintillation screen coupled to arrays of orthogonally crossed (X, Y ) wave-
length shifting optical fibers. A similar approach has been tried previously
using wavelength shifting optical fibers or wavelength shifter bars for small
area (<1 cmB1 cm) neutron detection [15] and for areas as large as
25 cmB25 cm [16]. The scintillator must detect thermal neutrons and reject
fast neutrons. A ZnS:Ag scintillation screen with 6LiF dispersed through it,
was chosen as the detection medium. The 6Li(n,α )3H reaction has a high

Figure 2. Schematic of a small portion (∼2 cmB2 cm) of the neutron moderation imager detec-
tion unit. It consists of a neutron-sensitive scintillation screen sandwiched between a crossed
grid of wavelength shifting fibers and a uniform sheet Californium neutron source. Coincident
light signals (two light dots), corresponding to scintillation from a detected neutron event (dark
dot), travel along an X, Y pair of fibers to a multi-dynode photomultiplier tube. Auxiliary
electronics decode the neutron position. For clarity each fiber is shown making a single pass
over the screen, but in the actual imager each fiber passes back and forth parallel to itself four
times. A detailed description is given in Section 2.
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Figure 3. Block diagram of the neutron albedo imager electronics. A neutron produces a pulse
in specific X and Y fibers. Charge division analysis of the corresponding photomultiplier
dynode outputs is used to decode the correct X and Y fibers. The corresponding position in
image memory is then incremented. A detailed description is given in Section 2.

cross section for thermal neutrons and a high positive Q value (4.78 MeV)
which is converted into the kinetic energy of the α and triton. The energetic
charged particles produce scintillations in the ZnS:Ag. 6Li glass scintillators
have been used with wavelength shifter bars and optical fibers to image
thermal neutrons over small areas [17]. They were considered, but the mater-
ials costs were prohibitively expensive for the large area required.

The active area of the detector is 40 cmB40 cm with 1 cmB1 cm
pixels. The detector area was chosen to allow the largest common AT mines
(∼30 cm diameter) to be covered with a reasonable buffer space on each side
to allow background estimation. Although it would be desirable to make
the area larger to include more background, this would make the instrument
impractical for handheld use. The 1 cm pixels were chosen to assure a
reasonably large number of pixels (at least 25 full pixels) across the smallest
buried AP mines (typically ∼6.5 cm diameter) while minimizing instrument
complexity. Further, as will be seen, backscattered neutron distributions are
reasonably smooth on a 1–2 cm resolution scale. The scintillator screen is
deposited on a glass substrate and is positioned between the X and Y arrays
of fibers. Above the upper fiber array is a boron layer (not shown in Figure
2) to absorb thermal neutrons from the source. The top layer is the planar
source with the same dimensions as the active detector.
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The neutron detection medium is an Applied Scintillation Technol-
ogies 6LiF�ZnS:Ag neutron radiography screen. It emits radiation in the
blue, peaking at 450 nm. The 1 mm diameter wavelength shifting fibers are
Bicron BCF-91A, which absorb below 450 nm and emit around 500 nm.
Each of the 80 (40X and 40Y ) fibers passes back and forth, parallel to itself,
four times over the screen to increase the effective path length. (For clarity
in Figure 2, each fiber is shown making only one pass.) Both ends of each
fiber are glued into a precision-machined faceplate, which positions them
over the appropriate pixel of the photocathode of a Philips XP1724 96-
channel multi-dynode photomultiplier tube (PMT). In practice the bends in
the fiber extend somewhat beyond the detector body to increase their radii
so as to maximize light transmission to the fiber ends.

Roughly 1.7B105 photons are emitted in the scintillator screen per
thermal neutron event. The number of photons per event reaching the PMT
photocathode can be estimated as follows. Approximately one half of the
photons exit each side of the screen. The absorption length in the wave-
length shifter is about 5 mm and the effective thickness of the fiber array
(assumed distributed as a 1 cm-wide bar) is 0.314 mm. Thus, the fraction of
light shifted on a single pass is 0.061. This must be reduced by a factor of
2 because only about half of the blue light is of short enough wavelengths
to be shifted. The fraction of the shifted light captured and transmitted by
the fiber is ∼0.034 and it is assumed that transmission loss due to the fairly
tight bends in the fiber is about 0.5. Combining these factors, the predicted
number of X and Y photons reaching the PMT photocathode is about 45
each per event. The PMT is operated in single-photon-counting mode, so
that good coincidence efficiency is possible.

Light pulses from the X and Y optical fibers are processed by the
system electronics (Fig. 3), which consists of the detector, the fiber-optic
links to the multichannel PMT, the X and Y charge dividers, the X and Y
locators, image memory and a controller which handles command and con-
trol and transmission of data to the analysis station.

The PMT has a 96 segment tenth dynode (of which 80 are used),
with each segment corresponding to a pixel on the photocathode. The X
and Y wavelength-shifter fibers are optically coupled to the photocathode
so that each time a fiber is excited, an electronic pulse appears on the corre-
sponding dynode segment. Each neutron event in the detector will excite
one unique combination of X and Y fibers, which gives the coordinates of
the location of the event.

Charge division is used to identify the pair of dynode segments that
have signals. This eliminates the need for 80 amplifiers and discriminators.
There are two groups of shifter fibers and hence dynode segments; one for
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the X coordinates and one for the Y coordinates. For each group, the seg-
ments are connected to a chain of 40 resistors (assuming a 40B40 array of
fibers). Each end of the chain leads to a charge-sensitive amplifier. Because
the ratio of charge reaching the amplifiers depends on the position of the
corresponding dynode on the resistive chain, the ratios of amplifier output
signals uniquely identifies the X and Y segments (and hence detector coordi-
nate) responsible for the event.

The data-processing electronics are designed to minimize the time
required to process events. To this end, analog dividers and fast analog to
digital converters (ADCs) are used to process the X and Y coordinate data
in the charge dividers. In the locators, field-programmable-gate arrays
(FPGAs) are used to sort the ADC outputs into X and Y coordinate bins
in the image memory. The operation is supervised by a microprocessor,
which looks after packaging the image data, transmitting it periodically to
the analysis computer, and receiving commands from the latter. The
analysis unit allows further image analysis and also provides the user
interface for command and control of the instrument.

Events are defined by hardwired coincidence requirements between
the X and Y array outputs so as to minimize the load on the digital system.
Through this design it is expected that the limit on count rate will be not
set by the hardware but by random coincidence background, which is
exacerbated by the slowness of the light output from the ZnS:Ag screen. To
reduce the coincidence background, a recently developed boron-rich liquid
scintillator [18] is being examined as a long term replacement for the
ZnS:Ag. It is substantially faster than the ZnS:Ag and appears to be inex-
pensive and easy to fabricate into imaging planes.

2.2. Neutron Source

The neutron source for the prototype instrument is a 252Cf source
with a total intensity of 2B106 n�s, uniformly distributed over the planar
area of the detector (40 cmB40 cm). The source strength was chosen to
provide reasonable detection times, while minimizing radiation exposure to
the operator. A uniform source close to the detector plane ensures that all
portions of the active area of the detector have a similar response function
and are used to form the image. This minimizes the counting time to achieve
a given statistical confidence level across the entire inspection area. Besides
increasing mine detection speed, minimizing measurement time decreases
operator radiation exposure. Finally, the source geometry produces as
homogeneous a background as possible, thus facilitating image analysis. In
fact, precise uniformity is not necessary as long as the two dimensional
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response function is, as expected, reproducible for a given set of soil
conditions.

There are other possible choices for an isotopic neutron emitter that
could be made in a uniform continuous sheet or array of distributed sources.
Among the factors to be considered are half life, specific activity and neu-
tron energy. The half lives of 252Cf, 241Am and 210Po are all acceptable for
a practical system (2.46 years, 433 years and 138 days respectively). The
latter two are α emitters that are commonly used with the

9
Be(α , n) reaction.

The albedo intensity, I, is a measure of the total thermal neutron flux
returning from the area of interrogation. Let Bi be the rate per source neu-
tron of thermal neutrons detected at the i th pixel of the imager, without a
target present. The albedo intensity, which is a function of the moderating
properties of the soil, is then defined as

IG∑
i

Bi (1)

where the summation is over a 2B2 grid of central pixels of the image array.
The albedo intensity as a function of incident neutron energy, estimated by
Monte Carlo simulation, is shown in Figure 4 for the geometry of Figures
1 and 2, with a 500 g cylinder of C4 explosive buried 5 cm under sand with
3 and 10% water content. The detector plane is 1 cm above the soil surface.
(Details of the geometry and simulation are given in Subsection 3.1.) At
each point on both curves, a monochromatic neutron source is assumed. A

Figure 4. Albedo intensity (Eq. (1)) vs. incident neutron energy, estimated from Monte Carlo
simulations for the land mine detector of Figures 1 and 2. The detailed geometry is described
in Subsection 3.1. Lower curve is for a medium of sandC3% water. Upper curve is for
sandC10% water.
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least squares fit to the curves reveals that the albedo intensity decreases with
increasing neutron energy En according to:

I≈1.0B10−4E−0.72
n 3% water content

(2)
I≈3.0B10−4E−0.62

n 10% water content

To maximize signal, this would suggest that a lower energy spectrum, pro-
vided by 252Cf or the 19F(α , n) reaction would be preferred. The geometry
assumed a land mine buried at a depth of 5 cm. For deeper mines, a higher
neutron energy, such as that of the 9Be(α , n) reaction, would be preferred,
since the neutrons would penetrate further into the soil and the spectrum
near the mine would be softened by the soil above the mine.

Uniform spatial coverage could be achieved in a number of ways.
The simplest is a square grid of point sources. Figure 5 shows the distri-
bution of neutron flux density per unit source activity (n�s�cm2) in the plane
of the ground�air interface for three different arrays of point isotopic neu-
tron sources. Sources are equally spaced, with spacings of 5, 6.67 or 10 cm
(cf. the 6.5 cm minimum diameter of an AP mine), in a 40 cmB40 cm square
grid in the plane of the imager. A 5 cm standoff between the imager plane
and the ground is assumed. It appears that, for a standoff of 5 cm, a 5B5
array of 40 ng 252Cf sources with 10 cm spacing could adequately approxi-
mate, with acceptable flux peak-to-valley ratios, the neutron spatial distri-
bution of a continuous uniform source. Calculations have shown that the
source spacing should scale with the detector standoff, which implies that if
a 2.5 cm standoff is desired, four times as many sources are required to keep
the flux distribution acceptably smooth. The cost of so many sources would
be high and and handling would be complex. It may also be difficult to
manufacture such small point sources.

A uniform, continuous, thin sheet 252Cf source is the preferred
approach for the proof-of-principle instrument. The biggest problem is that
the physical quantity of 252Cf is very small (∼1 µg) and the area density is
minute (∼0.6 ng�cm2). Fortunately, there are companies that specialize in
making 252Cf fission foil sources having similar concentrations. They can
make a source of the size necessary to cover the 0.16 m2 area, either in one
piece or as a mosaic of smaller sheets, at a reasonable cost. A detector using
a conventional isotopic source would require shielding for transport and
shipping, but not necessarily operation (due to the standoff of operator’s
station from instrument head). This is the approach that is being taken for
the prototype. Designs are presently being completed and a manufacturing
contract will soon be let.

The conventional isotopic source has a few logistical disadvantages,
which could be eliminated by switchable (on�off) neutron source: (1) It
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Figure 5. Distribution of neutron flux density per unit source activity, φ (n�s�cm2) in the plane of the ground–air interface for three
different arrays of point isotopic neutron sources. Sources are equally spaced, with spacing ∆ cm, in a 40 cmB40 cm square grid
in the plane of the imager. A 5 cm standoff between the detector plane and the ground is assumed.
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is always emitting radiation (neutrons and gamma rays), which presents a
perceived hazard to the operator. (2) It complicates operating procedures,
as it must be shielded when not in use, when the operator is nearby and in
transport. (3) It creates logistic problems because of the burden generated
by military and civilian regulatory agencies. There are several methods of
switching an isotopic neutron source on and off. The most promising is an
(α , n) source, switched by binary component separation. Many issues need
to be analyzed, including separation methods, weight, yield, safety and ease
and cost of fabrication. This will be a subject of future work.

An electronic neutron generator would be an alternative way to
achieve a switchable source and it could improve image contrast. The ther-
mal neutron decay time constant (1�e) is 300 µs for soil with high moisture
content and 600 µs for low moisture soil. This is substantially different from
the decay constant of TNT (160 µs), due to the large (1.78 b) thermal neu-
tron absorption cross section of nitrogen. Thus, measurement of thermaliz-
ation decay constants can dramatically increase the soil�mine contrast [1].
This would be expected to improve performance the most in high moisture
soil. A compact, pulsed electronic neutron generator which provides a uni-
form, low flux (∼600 n�cm2�s), distributed across a broad (40 cmB40 cm)
area, would be a suitable switched neutron source whose pulses would allow
measurement of the thermal decay constants. No such generators presently
exist.

There are various portable, sealed tube deuterium–deuterium (D-D)
and deuterium–tritium (D-T) neutron generators, based on different prin-
ciples [19,20], that are commercially available for a number of industrial
applications. They provide intense outputs (108–1011 n�s) and have rela-
tively compact designs. However, their inherent designs are based on a
single target and ion source types that do not allow them to be readily
adapted to provide a uniform, low flux, distributed across a broad area. We
have developed several novel design concepts that capitalize on the low
neutron output per unit area needed for this application. It should be noted
that, although switchable sources are attractive from the logistics, they are
not necessary for the success of the detector. Development of switchable
sources is challenging and expensive and will be a subject of future work.

3. Modeling Studies

3.1. Method

To determine the efficacy of the imager in a mine detection role, it
is necessary to estimate the target-to-background contrast as a function of
a number of varying parameters. The detector signal is sufficiently high
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that electronic noise can be eliminated using a threshold. The statistical
uncertainty in the target-to-background contrast is thus determined by the
Poisson statistics of detected neutrons over the target and from background
soil. The contrast is related to the backscattered thermal neutron rate, which
can be systematically studied using modern Monte Carlo modeling tech-
niques, prior to fabricating a detector. The modeling code chosen was the
MCNP neutron transport code developed by the Los Alamos Nuclear
Laboratory [21]. It is probably the most respected and most widely used
program of its kind and it has been verified extensively by nuclear research-
ers in both complicated and simple geometries. For what follows, a standard
geometry was defined to be 500 g of C4 explosive buried at a depth (distance
from soil surface to top of mine) of 5 cm with the detector array 1 cm above
the ground surface. The standard geometry is typical of a large AP mine.
(In very rough terms, a small AP mine has <100 g of explosive, a medium
AP mine has about 100–200 g and a large one has about 400–500 g. A small
AT mine has about 2 kg of explosive, a medium AT mine has about 6–7 kg
and a large one has about 10–13 kg.) The detector array was approximated
by a 40B40 array of 1 cm square pixels. The detector response to thermal
neutrons was assumed to be ideal. The source was a uniform sheet of 252Cf,
with the same dimensions as the detector, seated immediately above the
detector plane and concentric with the detector array. The total source
intensity was 2B106 n�s. The target was a right circular cylinder of solid
explosive material, having height equal to diameter and center directly
under the array center. All results which follow are for the standard
geometry, except as noted.

For the Monte Carlo modelling studies, the albedo signal (per pixel)
Ai is a measure of target-to-background contrast. It is defined as

AiG(SiABi)�Bi (3)

where Si is the count rate per source neutron for pixel i with the target
(explosive block) in place and Bi is defined in Eq. (1). Results are presented
for variations in the moisture content of the soil, explosive mass, depth of
burial of the land mine, type of explosives, presence of other common
materials, the height above ground of the detector (standoff) and height
variation of the ground surface. In what follows, one dimensional graphs
of albedo signal represent an average over a 4B4 grid of pixels concentric
with the detector array. The grid size was chosen so that the smallest object
of interest placed at the center would completely fill those pixels and hence
the response due to the pure target could be calculated. A small AP mine
(diameter ∼6.5 cm) will completely cover a 5B5 grid and will partially cover
about another 24 pixels.
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3.2. Parametric Variation of Albedo Signal

Hydrogen content, primarily due to water, is the primary determi-
nant of the albedo properties of soil. Figure 6 shows the variation of albedo
intensity with water content in sand (pure SiO2). The graph extends to 20%
because the realistic range of soil water content is between 0 and 30%
(w�w) water for various soils from sand through loam to clay [1]. (Although
saturation levels are quoted as high as 50%, we were unable to exceed 25%
in experiments with sand.) The upper curve is for a 252Cf source. Above
about 2% water content, the intensity is roughly linear with water content.
The lower curve is for an Am–Be source. The trend is similar, but the inten-
sity per source neutron is about 1�2 of that for Cf. Similar results are
obtained for more complex ANSI soil, if plotted against total hydrogen
content.

As previously stated, soil moisture decreases the albedo signal from
explosives. Figure 7 shows the variation of the albedo signal for the stan-
dard geometry as a function of the percentage water content in sand. The
signal is significantly above 100% in dry conditions and falls asymptotically
to ∼2% for near saturation.

Figure 6. Variation of albedo intensity (Eq. (1)) with water content in sand. Upper curve is for
252Cf source. Lower curve is for Am–Be source. Graphs are calculated from Monte Carlo
simulations for the land mine geometry described in Subsection 3.1.
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Figure 7. Variation of albedo signal (Eq. (3)) with water content in sand. Source is 252Cf. Graph
is calculated from Monte Carlo simulations for the land mine geometry described in Subsection
3.1.

The albedo signal was calculated for 100, 500, and 1000 g of C4,
corresponding respectively to a small to medium AP, large AP, and small
AT mine, using the standard geometry in sand, with 0, 3, and 10% water
content. For 0 and 3% water, the albedo signal, A (expressed in %), was
found to increase linearly with explosive mass, M(g), to within a few percent
error,

AG0.24M 0% water content
(4)

AG0.14M 3% water content

For a 10% water content, the trend appears nonlinear (Figure 8), but the
errors on the calculations are much larger. This suggests that care should
be exercized when extrapolating results to small explosive masses in wet soil.

The variation of the albedo signal with depth of burial of the land
mine was studied for the standard geometry in dry sand and sand with 3
and 10% moisture. The decrease in signal with depth was less than
exponential. For larger mines and drier conditions, a substantial albedo
signal remained at more than 15 cm depth. For higher moisture contents, a
usable signal still remained at more than 15 cm depth. An example of the
depth variation for a PMA2 land mine, which is much smaller than the
standard geometry mine (∼100 g versus 500 g), is shown in Figure 9.
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Figure 8. Variation of albedo signal (Eq. (3)) with mass of C4 explosive in sandC10% water.
Graph is calculated from Monte Carlo simulations for the land mine geometry described in
Subsection 3.1.

Neutron albedo imaging relies on detecting increased neutron moder-
ation, caused by a locally elevated concentration of hydrogen from explo-
sives. It is important, then, to examine the hydrogen content of explosives
with respect to soil and common environmental materials. Table 1 shows

Figure 9. Predicted albedo signal (Eq. (3)) vs. depth from a PMA 2 land mine in dry sand
(diamonds) and sand with 3% water (squares) and 10% water (triangles). Graph is calculated
from Monte Carlo simulations for the land mine geometry described in Subsection 3.1.
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Table 1. Hydrogen Content of Explosives and
Other Materials

Material H (atoms�cm3B10−22)

Dry Sand 0
SandC3% H2O 0.363
SandC10% H2O 1.21
ANSI soil 0.98

C4 3.57
TNT 2.16
RDX 2.52
PETN 2.54
NH4NO3 5.12
Dynamite 3.01

Wood (dry) 2.65
Wood (wet) 4.66
Lucite 6.36
PVC 3.84
Polyethylene 7.83
H2O 6.68

the hydrogen content of some soils, explosives and materials which might
be present in the ground. Monte Carlo calculations of the albedo signal of
some of these materials, using the standard geometry, are shown in Table 2
for sand with 0%, 3%, and 10% moisture. When plotted, the albedo signal,
as expected, increases with increasing hydrogen concentration contrast (Fig-
ures. 10, 11, and 12). Least squares fitting shows that the albedo signal
increases linearly for moist soil, but has a cubic relationship for dry soil.
The albedo signal, A (%), is given by

AG(−11.379J2.046)HC(15.424J0.762)H2

C(−0.998J0.067)H3 0% water content

AG(25.613J0.107)H 3% water content

AG(3.583J0.096)H 10% water content (5)

where H is the hydrogen contrast (difference between hydrogen concen-
tration of target and that of the embedding medium in units of atoms�
cm3B10−22). The average residuals are 5.2, 3.8, and 1.8 (units of % albedo)
for 0, 3, and 10% moisture respectively. These relationships should allow
extrapolation to other buried objects from the results shown in this section
for C4.

The standard geometry assumes a 1 cm standoff (height of detector
plane above ground surface). Since this may not always be possible, the
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Table 2. Albedo Signal (Equation 3) Expressed in % for Explosives and Other
Materialsa

Material SandC0% H2O SandC3% H2O SandC10% H2O

PETN 61 51 5.0
NH4NO3 207 120 12
H2O 314 166 20
Wood (dry) 51 53 7.0
Wood (wet) 188 114 15
Polyethylene 378 190 22
Aluminum −4 −5.6 –6.9
Void −1.7 −6.9 −5.9

aMonte Carlo simulations with the standard geometry of Subsection 3.1 were
used to estimate the albedo signal.

variation of albedo signal with standoff was examined. Figure 13 shows that
the albedo signal decreases in a weak exponential manner with standoff,
that is, as e−βh where h is the standoff in cm and β is a constant which differs
for each moisture level. The value of β is roughly 0.28 for 0% moisture and
0.14 for 3% moisture. For 10% moisture, there are different values of β for
hF2, 2Fh⁄7.5, and hH7.5. The signal generally decreases by about a fac-
tor of 2 for a 4 cm increase in standoff. This suggests that the standoff
should be minimized, although the detector could function at reduced sensi-
tivity if the standoff were increased by a few cm. This result also emphasizes

Figure 10. Variation of albedo signal (Eq. (3)) vs. hydrogen concentration contrast for various
materials in dry sand. Graph is calculated from Monte Carlo simulations for the land mine
geometry described in Subsection 3.1.
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Figure 11. Variation of albedo signal (Eq. (3)) vs. hydrogen concentration contrast for various
materials in sandC3% water. Graph is calculated from Monte Carlo simulations for the land
mine geometry described in Subsection 3.1.

Figure 12. Variation of albedo signal (Eq. 3)) vs. hydrogen concentration contrast for various
materials in sandC10% water. Graph is calculated from Monte Carlo simulations for the land
mine geometry described in Subsection 3.1.
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Figure 13. Variation of albedo signal (Eq. (3)) with detector standoff (height of detector plane
above ground surface). Variations are shown for dry sand (diamonds) and sand with 3% water
(squares) and 10% water (triangles). Graphs are calculated from Monte Carlo simulations for
the land mine geometry described in Subsection 3.1.

the advantage of imaging in neutron albedo detection of land mines. For
point detection, since the albedo signal (contrast) changes with standoff,
one needs to know and correct for standoff to infer material properties from
albedo measurements. In imaging, the contrast may change with standoff,
but the shape of a contrast anomaly will not. This makes imaging much
more tolerant to small changes in standoff.

The data from Figure 13 can also be used to gain insight into the
effect of ground surface roughness. For a fixed average detector height, the
change in albedo signal for a given change in detector height was estimated.
Since the signal in Figure 13 is an average over a small portion of the array
(4 cmB4 cm) which looks at a homogeneous region, the change in albedo
signal due to a variation in detector standoff should be roughly the same as
the change in albedo signal due to the same size surface height variation,
for a constant detector height. The variation in albedo signal vs. variation
in ground surface height and sand moisture content is presented in Table 3
for the ‘‘standard’’ detector standoff of 1 cm and a standoff of 2 cm. The
percentage uncertainties in albedo estimation range from 6 to 12% for a
0.5 cm surface height standard deviation and from 12 to 24% for a 1.0 cm
surface height standard deviation. Examination of Eq. (5) reveal that the
percentage error in hydrogen estimation is equal to percentage error in
albedo estimation for sand with 3 and 10% water and approximately equal
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Table 3. Variation in Neutron Albedo Signal vs. Variation in Ground Surface Height and
Sand Moisture Contenta

Average albedo signal (%)JStandard deviation

Detector heightG1.0 cm Detector heightG2.0 cm
Moisture

(%) σG0.5 cm σG1.0 cm σG0.5 cm σG1.0 cm

0 130.5J15.4 130.5J30.9 103.2J12.1 103.2J24.5
3 88.7J5.3 88.7J10.7 78.7J4.7 78.7J9.4

10 7.5J0.9 7.5J1.7 6.5J0.5 6.5J0.9

aMethod of calculation is found in Subsection 3.2. σ is the standard deviation of the ground
variation. Results for both the standard geometry detector standoff of 1cm and a standoff of
2cm are shown.

for dry sand. By examining Table 1, it can be seen that these uncertainties
would not interfere with distinguishing any of the explosives from any of
the soils. Dry wood could be confused with RDX and PETN. However,
since an image is being formed, the surface height variation could easily be
distinguished from mine shapes by the difference in spatial variation (bar-
ring pathological cases where roughness occurs in patches that are the same
shape and size as mines). This reemphasizes the advantages of imaging the
neutron albedo distribution vs. making point measurements.

3.3. Spatial Distribution

To study image properties of the detector, calculations were per-
formed for a 1 kg vertical cylinder (9.54 cm diameter, 8.46 cm height) of C4
at a depth of 5 cm in sand with 0, 1, 3, and 10% moisture. Two dimensional
distributions of the fractional albedo signal in the horizontal (XY ) plane
are shown in Figures 14, 15, 16, and 17. The horizontal area shown is
20 cmB20 cm (1�2 the field of view of the imager), with 2 cm pixels.

The maximum signal is comparable for 0, 1, and 3% water content.
The signal for 10% water content is much smaller and is statistics-limited.
The peak signals are in general agreement with Figure 7. The diameter of
the central peak of the signal (full width at half maximum) in dry sand is
≈5–6 pixels (10–12 cm), which is comparable to the diameter of the cylinder
of explosives. With increasing moisture, the width of the central region
expands and the albedo signal strength spreads further from the center,
extending well beyond the displayed region.

Smaller explosive masses are expected to have similar spatial distri-
bution properties, if normalized to the maximum albedo signal. Although
the distribution also broadens with increasing depth of burial, it may be
possible to separate this effect from that of increased moisture through a
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Figure 14. Two dimensional distribution of the fractional albedo signal (Eq. (3)) in the hori-
zontal (X, Y) plane in dry sand over a 1 kg cylinder of C4 (∼10 cm diameter). Land mine is
5 cm below the center of grid coordinate (5,S5). Horizontal extent is 20 cmB20 cm (1�2 FOV
of the imager) and spacing between horizontal tick marks is 2 cm. Graph is calculated from
Monte Carlo simulations for the land mine geometry described in Subsection 3.1.

knowledge of the moisture content. The latter can be estimated from the
albedo intensity (Figure 6).

The computer modeling suggests that examination of the strength of
the albedo signal, its spatial distribution and the albedo intensity can pro-
vide estimates of the size, shape and depth of suspicious objects. However,
the model geometry used has made a number of simplifying assumptions,
notably ideal detector response, simple targets and uniform soil. In practice,
complicated land mine structure (including voids), non-uniform soil and
typical detector response characteristics can cause the albedo images to dif-
fer substantially from the model. Thus, in order to determine the optimum
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Figure 15. Two dimensional distribution of the fractional albedo signal (Eq. 3) in the horizontal
(X, Y) plane in sandC1% water over a 1 kg cylinder of C4 (∼10 cm diameter). Land mine is
5 cm below the center of grid coordinate (5, S5). Horizontal extent is 20 cmB20 cm (1�2 FOV
of the imager) and spacing between horizontal tick marks is 2 cm. Graph is calculated from
Monte Carlo simulations for the land mine geometry described in Subsection 3.1.

method of analysis and to completely characterize the performance of the
imager, detailed data must be acquired using a prototype instrument under
a wide range of conditions.

4. Performance

The previously described model can be used to investigate the effect
of three main parameters in instrument performance; spatial resolution,
imaging time and albedo signal strength. Figures 14, 15, 16, and 17 show
that the instrumental resolution of 1 cmB1 cm should be more than
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Figure 16. Two dimensional distribution of the fractional albedo signal (Eq. 3) in the horizontal
(X, Y) plane in sandC3% water over a 1 kg cylinder of C4 (∼10 cm diameter). Land mine is
5 cm below the center of grid coordinate (5, S5). Horizontal extent is 20 cmB20 cm (1�2 FOV
of the imager) and spacing between horizontal tick marks is 2 cm. Graph is calculated from
Monte Carlo simulations for the land mine geometry described in Subsection 3.1.

adequate to accurately image the two dimensional distribution of the albedo
signal over a land mine.

To estimate the time to detect a target, it is instructive to look at a
simple detection algorithm which alarms if the albedo signal in an appropri-
ately sized area of the detector exceeds a threshold. It is assumed that the
albedo signal is normally distributed. This is reasonable, since the detector
is operating in photon counting mode. (The PMT pulses from neutron
events are large enough to be easily distinguished from electronic noise by
setting a discriminator level.) The albedo signal is a ratio of Poisson-distri-
buted numbers which is well approximated by a normal distribution as long
as total counts are not too small. We will choose the detection threshold to
be m standard deviations of the albedo signal. For small albedo signals
(<10%), it is straightforward to calculate the minimum counting time, T, to
detect a target. Eq. (3) is first used to estimate the variance in the albedo
signal, as a function of the number of background counts, by standard error
propagation. Next the albedo signal is equated to m times the standard
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Figure 17. Two dimensional distribution of the fractional albedo signal (Eq. 3) in the horizontal
(X, Y) plane in sandC10% water over a 1 kg cylinder of C4 (∼10 cm diameter). Land mine is
5 cm below the center of grid coordinate (5,S5). Horizontal extent is 20 cmB20 cm (1�2 FOV
of the imager) and spacing between horizontal tick marks is 2 cm. Graph is calculated from
Monte Carlo simulations for the land mine geometry described in Subsection 3.1.

deviation of the albedo signal. Finally, the background counts are expressed
as a function of source strength, count time, and average albedo intensity.
Combining these results, and with some rearranging, T is found to be

TG
8m2

nAr 2SIr
(6)

where Ar is the average albedo signal and Ir is the average albedo intensity
over n pixels. S is the total neutron source strength. This assumes that the
detection is statistically limited, clutter is not a factor and the detector is
100% efficient. For example, let mG2 (albedo signal must be two standard
deviations greater than 0) and nG16 (4 cmB4 cm area). For the standard
geometry of 500 g of C4 buried under 5 cm of sand containing 10% water,
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Table 4. Time to Detect a C4 Cylinder for Various
Explosive Masses and Moisture Contents in Sanda

Mass (g) Moisture (%) Time (s)

500 0 0.021
500 1 0.012
500 3 0.008
500 10 0.35
100 10 2.85
500 20 1.00

aDetection is assumed to be limited by counting stat-
istics rather than clutter. Assumptions are found in
Section 4.

SG2B106 n�s, Ar G0.08 (Figures 7, 8) and IrG4.5B10−4 per incident neu-
tron (Figure 6). This yields TG0.35 s. Detection times for the same
geometry, with different explosive masses and water contents are shown in
Table 4.

Figure 9 shows Monte Carlo calculations of the albedo signal of a
PMA2 land mine, buried in sand with 0, 3, and 10% water content, as a
function of depth. The PMA2 is a good example of a small to medium size,
low metal content land mine. Its main body is a plastic cylinder, 61 mm in
height, 68 mm in diameter, containing 100 g of TNT, 35 g of plastic, and
roughly 20% void. It is difficult, but not impossible, to detect with a conven-
tional electromagnetic induction mine detector, since it contains only 0.135 g
of aluminum. Likewise its small size makes it difficult, but not impossible,
to detect with ground penetrating radar. In sand with 0 and 3% water, the
albedo signal is positive and decreases monotonically with increasing depth.
The PMA2 may be readily detected at all depths up to at least 10 cm. In
sand with 10% water, the behavior is more interesting. Presumably because
of the internal void space, the signal is negative at zero depth. It increases
slowly with depth until a depth of 5 cm and then decreases slowly until at
least 10 cm depth. The signal is zero near depths of 3.5 cm and 8.5 cm. At
10 cm, the signal is weak, but measurable (Ar ∼−1.8%). Using the simple
detection model of Eq. (6), detection times for different depths of burial
and soil moisture contents were calculated (Table 5). For 0 and 3% moisture
content, detection times increase with depth. Due to the nonmonotonic nat-
ure of the albedo signal vs. depth for 10% moisture (Figure 9), the detection
time at 5 cm is greater than that at 0 or 10 cm. There is only a weak depen-
dence on moisture content for flush buried mines. At 5 cm depth, detection
time is a minimum at 3% moisture, while at 10 cm depth, detection time
decreases with increasing moisture. The latter may seem counterintuitive,
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Table 5. Time to Detect a PMA2 Antipersonnel Land Mine for
Various Depths and Moisture Contents in Sanda

Detection time (s)

Moisture Depth (cm)
(%)

0 5 10

0 0.20 4.86 68.7
3 0.21 1.07 13.4

10 0.33 9.88 6.86

aDetection is assumed to be limited by counting statistics rather
than clutter. Assumptions are found in Section 4.

but is due to the increase in albedo intensity with increasing moisture (Fig-
ure 6). Detection times for flush buried mines are less than 1 s, making slow
scanning a possibility for very shallow mines. For depths of 5 and 10 cm,
detection times are greater than 1 s and hence the detector is more suitable
as a confirmation detector.

The previous performance estimates are based on the uncertainty in
estimating the target-to-background contrast, which is dictated by counting
statistics. No use is made of the imaging capability of the instrument. Image
processing does not improve the target-to-background contrast, but it can
improve the target-to-clutter ratio compared to point detectors, which can
dramatically improve the probability of detection and false alarm rates.
Clutter can be discriminated from land mines on the basis of the horizontal
two dimensional spatial distribution (shape) of the albedo signal in conjunc-
tion with the strength of the signal. This can be achieved by application of
pattern classification techniques to shape features extracted from the albedo
signal images or even by visual inspection of the images. Unlike a point
detector, an imaging system can reject clutter due to variations in moisture
content and vegetative material, by ignoring broad, diffuse signals in favor
of compact, mine-sized ones. As discussed in Subsection 3.2, ground surface
irregularities also will have less impact on the performance of an imaging
detector than on that of a point detector because they will often image as
non-compact shapes. The height of a point detector above ground surface
must be known in order to compare the albedo signal over an unknown
target with a reference background signal. A horizontal planar detector
array eliminates this problem, since pixels distant from the target position
provide an automatic reference for the detector height. Even if the array is
somewhat tilted, the signal change due to the height difference across the
array will be gradual and one can compensate for it by inspection or in
processing.
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In order to illustrate the capabilities of the detector, images of a block
of wax, similar in size to a small to medium antipersonnel mine, were
obtained. The neutron moderation imager was inverted and the
12.5 cmB6.5 cmB3.0 cm, 225 g wax block was placed just above the plane
of the imager in various positions. Because the sheet Californium source
has not yet been fabricated, an approximation to the source was achieved
by suspending a weak (105 n�s) Pu–Be source 40 cm above the center of the
detector plane. An example albedo signal image is presented in Figure 18,
where the block is clearly visible in the lower right-hand corner. Due to
the weak, distant source, image acquisition time was 1000 s. It should be
emphasized that the images obtained so far are preliminary. They were
obtained to test the functioning of the detector and not its performance in
mine detection. There is still a significant amount of work to be done to
optimize the detector and this optimization, including the sheet neutron
source, should significantly improve image acquisition time and image
quality.

Figure 18. Example neutron albedo signal image of a block of wax, similar in size to a small
to medium antipersonnel mine, obtained by the neutron moderation imager. The block was
placed just above the detector plane. Its position is indicated by the dotted rectangle. The
neutron source was a 105 n�s Pu–Be source suspended 40 cm above the center of the detector
plane. Due to the weak, distant source, image acquisition time was 1000 s.



238 McFee et al.

5. Conclusions

A conceptual design of a neutron albedo two dimensional imager
has been developed. It consists of a novel thermal neutron imaging system,
a unique neutron sheet source to uniformly irradiate the underlying ground
and hardware and software for image generation and enhancement. A
proof-of-principle imager with dimensions of roughly 40 cmB40 cm, mass
of 13 kg and consuming 10 W of power, has been built, but presently uses
a point source offset from the detector plane to approximate a very weak
uniform source at the detector plane. Imagery from the detector of mine
surrogates was presented.

Realistic Monte Carlo simulations were performed using the same
two dimensional neutron imaging geometry as the detector to estimate per-
formance capability, including adequacy of spatial resolution, target-to-
background contrast, and detection times. To do so, the strength of the
returning neutron signal (relative to background) was determined for vari-
ous soil and explosive types, moisture contents and other relevant param-
eters. The simulations showed that the neutron albedo imager is feasible as
a land mine detector in a slow scanning or confirmation role. Estimated
detection times for flush buried PMA2 AP mines were less than 1 s, making
slow scanning a possibility for very shallow mines. For depths of 5 and
10 cm, detection times were greater than 1 s, but no more than about 1 min.
Hence the detector is more suitable as a confirmation detector for small
mines at greater depths. Larger AP mines (500 g C4 equivalent) buried at
5 cm in 20% moisture content sand could be detected in 1 s. Spatial resol-
ution of the instrument was better than the maximum spatial frequency of
the two dimensional neutron distributions. Thus image quality should be
sufficient to allow clutter rejection. This should significantly improve detec-
tor performance and reduce false alarm rates compared to non-imaging
albedo detection, particularly in moist soils, where surface irregularities exist
and when the sensor height is uncertain.

Present research is aimed at optimizing the detector and completely
characterizing its performance. The sheet Californium source is expected to
be installed by summer 2003. Several improvements are also planned which
could further enhance the image contrast of land mines and hence improve
the detector performance. These include a novel boron-doped liquid scintil-
lator image screen, a broad area pulsed electronic neutron generator and
advanced image processing algorithms for automatic target detection, based
on pattern recognition and mathematical morphology.
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In this work we present results on the improvement of resolution capability and accuracy for

radar signal evaluation by means of model-based frequency estimation algorithms. In frequency

modulated continuous wave radar sensors, which are widely used in industrial contactless dis-

tance measurement applications, the usage of the Fourier Transformation for signal evaluation

is very common. Nevertheless, using the Fast Fourier Transformation, the resolution capability

for closely spaced targets is limited and directly related to the employed signal bandwidth.

Model-based frequency estimation algorithms, developed during the last decades, can essen-

tially improve target resolution and distance accuracy. These improvements are shown on

simulation data as well as on measured data. Model order estimation, still a challenge when

applying model-based evaluation techniques, is tackled by an adaptive approach.
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1. Introduction

Microwave distance sensors based on radar technology are state-of-
the-art sensors for contactless measurements in industrial environments due
to their insensitivity to most environmental influences even under extreme
conditions. Progress in semiconductor technology at higher frequencies is
bringing microwave sensors towards applicable products, and further cost
reductions necessary for the mass market, e.g. in the automotive industry,
are nearly reached.

Besides advances in RF-semiconductor technology, powerful signal
processors enable the application of sophisticated signal processing. The Fast
Fourier Transformation (FFT) [1] is still by far the most frequently applied
algorithm for the evaluation of sensor data measured with a frequency
sweep. There are well-known limitations of the FFT, e.g. the resolution limi-
tation of closely spaced targets, which is directly related to the sweep band-
width. Model-based frequency estimation algorithms are suited to enhance
the resolution capability as will be shown in this paper. For model order
estimation, typically a challenging task, a new adaptive approach is used.

Beginning with the derivation of the radar signal model, limitations
of the FFT will be shown. After describing elementary ideas behind some
model-based algorithms, consequences of selecting an incorrect model order
are outlined, and the adaptive model order determination procedure is pres-
ented. Afterwards, simulation results of the resolution enhancement are
shown. Measurement results obtained from a laboratory test setup are pres-
ented to verify the improvements achieved with exemplary model-based
frequency estimation algorithms [2].

2. Radar Signal Model

The radar signal model is derived for a typical radar setup, as
shown in Figure 1. The transmit signal is generated by a voltage-controlled

mixer
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converter

VCO targetcirculatorcoupler
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Figure 1. Block diagram of an FMCW=FSCW radar setup with a single target at distance R.
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oscillator (VCO). The ramp generator produces either a highly linear ramp
for the linear frequency modulated continuous wave (LFMCW) case or
small, equal steps in the frequency stepped continuous wave (FSCW) case.

A circulator redirects the received signal to the mixer, where it is
mixed with a part of the transmit signal, and low-pass filtered. Finally, this
signal is sampled and digitized to values yn. Under some constraints, which
are mostly fulfilled, the FM and FS case can be viewed as equivalent. The
time of flight (TOF) of the electromagnetic wave to the target and back can
be expressed by

t =
2R

c0
(1)

where R is the range to the target and c0 denotes the velocity of light. With a
linear modulation scheme the actual transmit frequency becomes

w t(t)=w0 +Kt with K =2p
B

T
(2)

where B represents the full sweep bandwidth and T the ramp duration. The
propagated wave experiences a phase change during TOF that—under the
assumption t@T—results in an intermediate frequency (IF) signal phase of

j(t) = (w0 +Kt)t =w0t +Ktt (3)

Additionally, assuming sampling intervals equidistant in time in the
LFMCW case, or equidistant in frequency in the FSCW case, Eq. (3) can,
with N as the number of samples, be rewritten as

jn =j t =
n

fS

� �
=w0t +2pBt

n

fST
=w0t +

2pB
N

tn =w0t +KFStn (4)

eliminating time-dependency. In (4) KFS= 2pB=( fST ) denotes the frequency
difference between steps or sampling instants and n designates the n-th
sample. Thus, for the k-th individual target at distance Rk the initial detected
phase and the discrete frequency are given by

j0,k =w0

2Rk

c0
and wk =KFS

2Rk

c0
(5)

respectively. For moving targets the Doppler-shift has to be taken into ac-
count, too [3]. Due to the linear behavior of the whole system the response
of p targets is the sum of all individual signals, resulting in a radar signal yn
which is composed of p complex exponentials with individual amplitudes Ak.

yn =
Xp

k=1

Ake
j(wkn+j0,k) (6)
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In the radar system sketched in Figure 1 only the real part of the complex IF
signal is measured, which results in a sum of cosine functions. With a second
mixer and an additional 90x phase shifter in the local oscillator (LO) path,
both the inphase (I) and quadrature phase (Q) components of the complex
signal can be measured.

3. FFT-Based Frequency Estimation

Frequency estimation using the FFT is usually a two-step procedure
involving computation of the frequency-domain representation of the sam-
pled data sequence followed by a peak-search in the resulting periodogram.
Due to the nature of the FFT which assumes periodicity of the signal in time-
domain, the spectrum is evaluated on a grid of fixed frequency values only.
As the fineness of the grid is determined by the duration of the sampling
period, extending the time-domain data by adding zeros to the available
data samples—a procedure known as zero-padding—causes interpolation in
a finer frequency-grid, hence facilitating the determination of the exact peak
location [4].

The result obtained after padding the time-domain data sequence
with zeros is the same as if a long sinusoidal data sequence was multiplied
with a rectangular, or boxcar window, which in frequency domain causes the
spectrum of the window-function being folded to the location of the sinu-
soids’ frequencies, thus widening the theoretically infinitely narrow spectral
peaks. By applying different window-functions, the appearance of spectral
peaks in frequency-domain can be controlled and specifically used to reduce
sidelobes in the spectrum and therefore influence on other points on the
frequency grid.

Two separate performance criteria of frequency estimation algorithms
can be distinguished: ranging accuracy and resolution capability. In the fol-
lowing, the term (ranging) accuracy will be used to characterize the deviation
of frequency estimates from the respective true values, i.e. how accurately a
target’s position can be determined. Measurements are always influenced by
random noise such as thermal component noise or background clutter, as
well as systematic disturbances, e.g. a nonlinear oscillator sweep. Therefore,
evaluation results usually contain stochastic and deterministic errors, i.e.
a superposition of stochastic deviations over a constant offset. Boundaries
for the achievable accuracy under stochastic influences, or more specifically
a lower limit on the achievable variance of frequency estimates is given by
the Cramér–Rao lower bound (CRB). For the problem on hand, assuming
additive white Gaussian noise, the CRB can be computed numerically [5].

Closely spaced peaks in the frequency spectrum usually influence each
other and are another source of error in the frequency estimates for the
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respective other peaks, yet they may be distinguishable as two peaks. Res-
olution capability therefore denotes the ability of an algorithm to resolve
two closely spaced frequencies in the evaluated signal as two distinct signal
components, regardless of possible deviations of the estimates from the true
frequency values. Interestingly, in FMCW radar systems the achievable ac-
curacy for a single target can be much better than the minimum frequency
distance for which two signal components can be resolved.

The apparent trade-off between accuracy and required computational
effort that limits the number of added zeros before computation of the FFT
can be overcome in part by noting that in a first-order approximation the
topmost spectral values for most window-functions follow a parabola whose
parameters and vertex position can be computed in a straightforward man-
ner. Another method to improve estimates is to determine the spectral peak
centroid whose location along the frequency axis can be taken as an estimate
for the true signal frequency.

Contrary to some common misconception, that like accuracy, resolu-
tion can be improved by zero-padding, it is only the finite width of the main
lobe of the window function that limits resolution. As the frequency difference
between two sinusoids decreases, the corresponding spectral peaks move
closer together, and merge to one large peak below a certain limit, inhibiting
detection of two sinusoidal components. Interestingly, resolvability at a given
frequency difference in the critical region around this limit is largely in-
fluenced by the initial phase difference of the two sinusoids. Figure 2 shows

Figure 2. FFT spectra for two sinusoids of fixed frequency (2p64=256 and 2p 65=256 rad=sample)

and varying phase difference (in steps of df = p=16) with N = 256 sample points. True peak

locations are marked with ‘‘·’’.
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the amplitude density spectra of synthetic signals consisting of two equi-
amplitude sinusoids of discrete frequencies 2p64=256 and 2p65=256
rad=sample, respectively, with an initial phase difference Df varying from 0
to 2p in steps of df = p=16, as obtained from the FFT after applying a
Hanning-window. Apparently, while for certain constellations two peaks are
clearly recognizable, in more than half the cases the result contains one large
peak instead of two—and the resolution of two sinusoids is impossible.
Furthermore, even if two sinusoids are resolved such as in the signal marked
with triangles, ranging accuracy is affected as the acquired estimates deviate
considerably from the theoretical location indicated by two ‘‘·’’ in the plot.

In an FMCW-system, a limit on resolvable frequency differencemeans
a limit on the distance difference below which two targets cannot be dis-
tinguished. In a setup with many closely spaced targets resolution achieved
with the FFT frequency estimator may not suffice, necessitating more
sophisticated frequency estimation algorithms.

4. Model-Based Frequency Estimation Algorithms

In contrast to FFT analysis, where an unknown signal is decomposed
in harmonic components with harmonic frequencies located on a pre-
determined grid, model-based analysis utilizes the knowledge of the signal
shape of individual target responses and locates signal components at
arbitrary frequency values. The results achieved attain or come close to the
CRB that may be computed as shown in [5].

According to the radar signal model in (6) a mathematical model of
the form

sn =
Xp

k=1

cke
jwkn n =0, . . . ,N–1 (7)

describing the response of p independent targets and ideally fitting the
measured data yn is used for the estimation of the frequencies wk containing
the unknown target distances. The complex amplitudes ck also containing
the initial phase of the reflections are estimated in a second step. Eq. (7)
assumes complex measurement data to fit. In simplified configurations with
an inphase measurement branch only, the model order p must be twice as
high as the expected number of targets to fit the real-valued measurement
data.

A remarkable property of this signal model is the linear predictability
of subsequent samples in forward direction and previous samples in back-
ward direction by means of a linear combination of the p previous or sub-
sequent sample values [6] (.* denotes complex conjugation).
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sn = –
Xp

l=1

glsn–l and s*n = –
Xp

l=1

gls*n+l (8)

From this linear predictability property it directly follows via z-Transforma-
tion that the ideal sampled sequence sn may be viewed as output of an
oscillator in its discrete transfer-function representation, with nonzero initial
condition and the zero-sequence as input. If the oscillator is of the order
M–1>p then there is no unique polynomial representation, leading to a set
of M–p transfer functions given by the reciprocal of the polynomial Gl (z)
defined in (9). Any such oscillator will have p of its roots on the unit circle in
the complex plane, with complex arguments equal to the desired frequency
estimates wk.

Gl(z) =
XM–1

k=0

gk,lz
–k = [1 z–1 � � � z –(M–1) ]

g0,l
g1,l

..

.

gM–1,l

2
66664

3
77775 = zT(z) gl

l=1, . . . ,M–p (9)

The vectors gl containing polynomial coefficients gk,l that form a lin-
early independent set can be assembled in a full-rank matrix G (10), whose
determination, followed by polynomial rooting, is the aim of polynomial-
based algorithms.

G = [ g1 g2 � � � gM–p ] (10)

Another view of the problem can be obtained by using the alternate
state-space oscillator model of minimum order p as in (11), with the state-
feedback matrix A, the state vector xn in the n-th step, and the output vector
c. In this case frequencies are contained in the eigenvalues of the matrix A.

xn+1 =Axn

yn =cTxn

(11)

For computation of A, the extended observability matrix Q defined in (12)
and so-termed for its structure well-known from control theory, can be used.
Obviously the state-feedback matrix is a solution to (13), where the notation

[a:b,:] indicates a submatrix containing rows a through b only.

Q =

cT

cTA

..

.

cTAM–1

2
6664

3
7775 (12)
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Q[1:M– 1,:]A=Q[2:M,:] (13)

Hence, the frequency estimation problem is transferred to a parameter esti-
mation problem for a linear oscillator.

The model-based algorithms discussed here use either the raw data
or the data covariance matrix for frequency estimation. Let M$p + 1
ideal data values sn, starting at sample position n be assembled in the data
vector sn

sn = [sn sn+1 � � � sn+M–1]
T (14)

Using this notation a noise-free data matrix S can be formed by

S = [s0 s1 � � � sN–M] (15)

The same notation can be used for the measured values yn, to form a
measurement data matrix Y.

Some algorithms are based on decomposition of the data covariance
matrix defined using the expectation operator e{.} as

Rssm =efsnsHn+mg =

rssm rssm+1
� � � rssm+N–1

rssm–1
rssm � � � rssm+N–2

..

. ..
. . .

. ..
.

rssm– (N–1)
rssm– (N–2) � � � rssm

2
6664

3
7775 (16)

with entries

rssm =e sns*n+mf g = lim
N!O

1

N

XN–1

n=0

sns*n+m (17)

Due to the finite number of available samples N, the data covariance matrix
Ryy =Ryy0 must be replaced by an estimate R̂Ryy in computations, e.g.

R̂Ryy =
1

N–M +1

XN–M

k=0

yky
H
k =

1

N–M +1
YYH (18)

Other estimators for this matrix that retain certain properties of the
true data covariance matrix such as centrosymmetry may be used instead [7].

For a particular state-space realization given by Ad = diag{e jw 1

e jw 2 � � � e jwp} and cd = [1 1 � � � 1]T, according to (12) the observability
matrix Qd is of the form

Qd =

1 1 � � � 1
e jw1 e jw2 � � � e jwp

..

. ..
. . .

. ..
.

e jw1(M–1) e jw2(M–1) � � � e jwp(M–1)

2
6664

3
7775 =QT–1 (19)
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and can be converted to the observability matrix Q of any other state-space
realization via the appropriate regular state transformation T. Noting that
the rows of Qd

H are formed by vectors zt(z = e jwk) as in (9) and that at the
signal frequencies Gl(z = e jwk) = 0, the relationships

QH
d G = (T – 1)HQHG =0 and QHG =0 (20)

immediately follow. Via (20) it can be shown that Q and G from which
frequencies can be determined as described above are available from the
data- or the data covariance matrix in a one-step procedure.

As shown in (21), the left singular vector matrix yielded by a singular
value decomposition (SVD) of either S or Rss can be partitioned after p
columns into the desired matrices,

S = [Q jG ]
SS,1 0

0 0

" #
VH

S,1

VH
S, 2

" #

and

Rss = [Q jG ]
SR,1 0

0 0

" #
UH

R,1

UH
R, 2

" #
(21)

Based on the common principles described, the model-based algo-
rithms differ by either starting from the data- or the data-covariance matrix,
applying different methods for reducing the effects of noise, and obtaining
final frequency estimates in a more sophisticated way than the straight-
forward approach presented above.

To compare results of the model-based approach to those obtained
from the FFT using the boxcar (FFTbp) as well as the Hanning window
(FFThp) and fit of a parabola, four algorithms—two polynomial- and two
state-space-based—have been selected for this work. Indicated in the follow-
ing list are briefly only the underlying principles, for additional information
the reader is referred to the original publications:

. The Tufts and Kumaresan Variant of the Prony frequency esti-
mation procedure (TKV): A linear system of equations derived
directly from the linear predictability property (8), is solved for a
single coefficient vector after computing a low-rank approximation
to the unperturbed data by performing an SVD on the raw data
matrix [8].

. Multiple Signal Classification (MUSIC): Starting from a factoriza-
tion of the data covariance matrix, a polynomial with second-order
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roots at the frequency locations on the unit circle is defined from a
combination of all coefficient vectors obtained [9,10].

. Fast Estimation of Signal Parameters via Rotational Invariance
Techniques (FESPRIT): A Karhunen–Loève Transform is applied
to two data covariance matrices, frequencies are directly computed
as a solution to a generalized eigenvalue problem [11].

. Toeplitz Approximation Method (TAM): A total-least-squares
solution to (13) is computed from the partition of the left singular
vector matrix of the data covariance matrix [6].

5. Model Order Estimation

A challenging problem in conjunction with model based evaluation is
the correct estimation of the model order p [12]. The model order determines
the dimension of the square state feedback matrix A and corresponds to the
number of sinusoidal components in the signal yn. In the case of measure-
ment data the model order is generally not known a priori, with the excep-
tion of applications where the number of targets is fixed by design, such as in
surface acoustic wave (SAW) tag identification [13].

The nature of microwave distance sensor signals leads to a high
number of superimposed response signals with different frequencies resulting
from free space propagation with a multitude of objects and thus an un-
known number of reflections within the radar path. Due to the geometrical
extent of real targets, the point scatterer model (6), which is assumed by
algorithms described above, is not exactly valid in reality, which leads to a
blurring of individual target responses.

A deviation of the chosen model order from the correct number of
sinusoidal signal components leads to incorrect results. Selecting the model
order too low inevitably results in loss of signal components, and possible
errors in the remaining targets. A model order higher than the optimum may
result in large spurious peaks hiding the wanted signals. These artifacts can
be used to adaptively determine the best model order for the problem on
hand as will be shown later.

A model order prediction can be performed with the singular value
spectrum of the data covariance matrix. In the noise-free case and when the
data ideally match the model, there exist exactly p non-zero singular values
in accordance with the model order p. In the practical case a noticeable gap
between the p greatest singular values and the remaining smaller ones is
expected, but on real data this gap nearly disappears, and reliability of this
simple method is not sufficient.

Other statistical criteria like the Akaike Information Criterion
(AIC) [14] or the Minimum Description Length criterion (MDL) [15,16]
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also fail when applied to real sensor data with typical systematic dis-
tortions. A method for determining the number of sinusoids in white
noise [7] performs slightly better on measurement data, but is still not
reliable enough.

Best results were obtained with a completely different approach.
In this adaptive method unwanted effects caused by a wrong model
order are monitored and the model order is adapted to minimize spurious
signals.

Figure 3 illustrates the unwanted effects caused by wrong model
orders. The plots (a), (c), and (e) show the amplitudes versus frequency of the
spectral components, whereas the plots (b), (d), and (f ) depict eigenvalues
of the state feedback matrix in the complex plane. The model used in this
simulation is of order five with additive white Gaussian noise and a signal-to-
noise ratio of 0 dB with respect to the average signal amplitude. True signal
components are marked by ‘‘·’’, estimates are marked by ‘‘#’’. An evalu-
ation with the TAM algorithm and the correct model order, shown in Figure
3(c, d) yields results with high frequency accuracy. Amplitudes not estimated
directly by the model based algorithm but in a second step, are of little
interest in distance calculation. Figure 3(a, b) exemplarily shows effects
that may occur if evaluation is performed with an incorrect model order of
ten. Signal components with frequencies close to zero (A) or close to half the
sampling rate (B) can erroneously appear. The spurious signals marked with
(C) stem from two eigenvalues close together corresponding to complex fre-
quencies, and exhibit extremely high amplitudes. Some signal components,
e.g. (D), with small amplitudes additionally appear. Marker (E) shows a
correctly identified signal component. The evaluation with a model order
assumed too small is accompanied by a loss of information. This is shown
in Figure 3(e, f ) for a chosen model order of three and lost frequency
components (F).

The adaptive algorithm starts with a quite high model order and the
frequency estimates are observed with respect to the aforementioned effects.
If one ore more of them are encountered, the model order is reduced until a
stable model order estimate without any spurious frequency components is
obtained. Simulations and measurement results showed that this approach
outperforms all statistical criteria mentioned above by far in FMCW signal
evaluation.

6. Simulation of Resolution Enhancement

Too many parameters are involved to compare the abovementioned
algorithms with a single measurement or by a simple statement. Therefore,
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Evaluation results with an assumed model order (a), (b) higher than, (c), (d) equal to,

and (e), (f ) lower than the correct number of sinusoidal components. In the simulation an SNR

of 0 dB with respect to the average signal amplitude was used. Diagrams (a), (c), and (e) show the

calculated signal amplitudes vs. discrete frequency, whereas in (b), (d), and (f ) the eigenvalues

are plotted in the complex plane.

252 Stelzer and Pichler



simulations under many different boundary conditions were carried out, and
the results are compared in a statistical manner.

The main goal is to show the capability of resolving two closely lo-
cated targets in an FMCW scenario, which corresponds to signal frequencies
close together. As demonstrated in the FFT section, the signal phase has an
important influence on the resolution capability. For the following simula-
tions two signals with frequencies w1 and w 2 are considered to be resolved if
the estimated frequencies lie within a tolerance band of ±jw1–w 2j=2 around
the true value and the amplitudes are within a window of ±50% from the
actual value. Every plotted point is averaged out of 100 simulations with
N= 128 data points each and random phase differences between the signal
components.

The first simulation treats the detection probability of two signal
components (targets), as defined before, with identical amplitudes as a func-
tion of SNR (varying from 0 to 40 dB) and frequency difference (varying
from 0.005 to 0.1 rad=sample). Results for six different algorithms are
plotted in Figure 4, namely (a) FFTbp, (b) FFThp, (c) TKV, (d) MUSIC,
(e) FESPRIT, and (f ) TAM. The FFT spectral grid spacing and hence the
nominal resolution in that case corresponds to 2p=128 = 0.049 rad=sample.
Especially for frequency differences below this value the results clearly show
the limitations of both FFT variants (a, b) with respect to resolution capa-
bility. Due to the narrower main lobe, the boxcar window produces better
results than the Hanning window, as far as only resolution is considered (see
also Figure 8). At the nominal FFT resolution limit all model-based algo-
rithms exhibit noticeably better results (c–f ). The FFT is insensitive against
SNR degradation, but its performance is clearly limited by the frequency
difference. TKV, MUSIC, and TAM show similar results with a dependence
on SNR and Dw, whereas the FESPRIT also saturates for very small fre-
quency differences essentially independent of the SNR. For better compar-
ability results at an SNR of 20 dB are additionally marked with a thick solid
line in Figure 4 and plotted in Figure 9(b).

In the second simulation the SNR remains constant at 20 dB with re-
spect to the target of fixed frequency and amplitude. Instead of varying the
SNR, the amplitude of the smaller signal component changes from a signal
power ratio compared to a fixed target of 0 to 40 dB. The frequency differences
are the same as before. Figure 5 shows the simulation results of the detection
probability for the six different algorithms. The leakage of the main peak in
the FFT evaluation, especially when the boxcar window is used, very quickly
masks smaller signal components as their amplitude decreases. The wider
main lobe of the Hanning window as compared to the boxcar window, how-
ever, more quickly leads to overlapping, which results in an overall lower
resolution capability. All model-based algorithms exhibit a similar behavior
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(a)

(c)

(e) (f)

(d)

(b)

Figure 4. Detection probability of two targets with identical amplitudes as a function of SNR

and frequency difference for different algorithms (a) FFTbp, (b) FFThp, (c) TKV, (d) MUSIC,

(e) FESPRIT, and (f ) TAM.
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(a)

(c) (d)

(f)(e)

(b)

Figure 5. Detection probability of two targets with an SNR of 20 dB as a function of signal

power ratio and frequency difference for different algorithms (a) FFTbp, (b) FFThp, (c) TKV,

(d) MUSIC, (e) FESPRIT, and (f ) TAM.
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with a degradation in resolution ability first at a power ratio of 25 dB. The
curves in Figure 5 at a signal power ratio of 20 dB are highlighted for better
readability.

7. Measurement Setup

To verify simulation results and to analyze the behavior of the dif-
ferent algorithms when applied to real radar signals a test setup as shown in
Figure 6 was used. Measurements were taken with a vector network analyzer
around 24 GHz with two targets under laboratory conditions, but not in
an anechoic chamber. Therefore, some background echoes and multipath
responses can be found in the measurement data. The fixed target was a
circular metal sheet and the moving target was a corner cube, with reflection
coefficients for both targets being in the same order of magnitude.

Starting at 22 GHz, 801 frequency points equally spaced 5 MHz apart
were taken at each individual arrangement with the moving reflector starting
about 10 cm closer to the horn and moving away 1 cm every measurement
cycle. The fixed target was located at a distance of 98 cm from the front of
the horn antenna.

8. Measurement Results

The raw data cover a bandwidth of 4 GHz with a center frequency of
24 GHz. As stated in Eq. (5) the initial phase depends not only on the target
distance, but also on the sweep starting frequency. Therefore, to get a stat-
istical distribution over different phase angles, data vectors with 256 data
points each, shifted by two data points for each evaluation, are taken out of
the raw data so that 273 individual results per target position are available.
Due to the limited frequency range of the horn antenna the obtained initial
phase difference between reflections from fixed and moved target does not
cover a range of 2p below a distance difference of 5.5 cm, but gives enough
points to show the general behavior. With N = 256 samples and a frequency
step of 5 MHz the corresponding Fourier resolution in distance is 11.7 cm.

corner cube (moving)
mounted on precision rail

network
analyzer

circular metal
sheet (fixed)

24-GHz
horn

98 cm

motor
controller

stepper
motor

90 – 175 cm

personal
computer

S11

Figure 6. Schematic of the test measurement setup.
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Apart from the radar echoes originating from the two reflectors,
the simple test setup creates several unwanted reflections that appear as
additional targets such as the wall in the background, the discontinuity at
the coaxial connector, the coaxial to waveguide transition, and multipath
reflections.

Figure 7 shows the summarized evaluation results, plotted as fre-
quency of occurrence of the respective distance estimate (in cm) for every
position the target was moved to (in cm) for a center frequency of 24 GHz, a
bandwidth of 1280 MHz, N = 256 samples, and 273 measurements at each
position. The model order in the test setup was p = 6 signal components,
covering the two distinct targets and additional reflections at the antenna
and from the background.

The frequency estimates corresponding to the fixed and moved tar-
gets are clearly recognizable in all plots—as long as the difference in target
distance is high enough. In the lines the estimates form, the region around
10 cm of moved distance, where both targets are at similar absolute dis-
tances to the antenna, is especially noteworthy. The model-based algo-
rithms, especially the TKV, MUSIC and TAM algorithms deliver two
separate bars even for very small frequency differences, while for the FFT-
based algorithms, two bars merge into one, long before the intersection is
reached. What can also be seen in the FFTbp plot is that even when the
two targets are resolved, the relatively high sidelobes of the spectrum of
the boxcar function exceed other signal components in many cases and
bring about an unwanted row of bars parallel to that corresponding to the
main peak.

Depicted in Figure 8 is the standard deviation of the distance estimate
for the fixed target over the distance to the moved target as derived from
measurements. For very low frequency differences the standard deviation
increases from zero at equal distance to considerably high values of several
centimeters. As already expected from the illustrations in the FFT-section, a
close-by disturbing target obviously degrades the precision of frequency es-
timates considerably, especially for the FFT-based frequency estimators.
Also, though with the Hanning-window the standard deviation reaches a
higher global maximum value, it declines relatively rapidly to values com-
parable to most model-based algorithms. With the boxcar-window, in con-
trast, it finally approaches a higher value only after attaining several further
maxima.

Comparing Figure 9(a) that shows the results from resolution eval-
uation for algorithms applied to measured data to Figure 9(b) that contains
simulation results for a signal to noise ratio of 20 dB proves very good
agreement between resolution probability derived from simulated and mea-
sured data. Note that a target distance difference of 10 cm in Figure 9 is
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Frequency of occurrence of distance estimates as a function of real movement with

256 samples spaced 5 MHz apart and a center frequency of 24 GHz for different algorithms

(a) FFTbp, (b) FFThp, (c) TKV, (d) MUSIC, (e) FESPRIT, and (f ) TAM.



equivalent to a discrete frequency of 0.042 rad=sample in Figure 4. Clearly,
as concluded before from simulations, model-based frequency estimation
delivers a significantly lower resolution limit.

9. Conclusion

With the application of state-of-the-art frequency estimation algo-
rithms to the evaluation of linear FMCW=FSCW distance radar measure-
ment data, a much better resolution capability for closely spaced targets, and
an enhancement in distance accuracy can be achieved. The general resolution
problem was sketched on the FFT spectrum and then simulations for closely
spaced targets under different constraints and using different algorithms

Figure 8. Standard deviation of the position estimate for the fixed reflector as a function of the

distance difference between reflectors with respect to the antenna.

(a) (b)

Figure 9. Detection probability of two targets as a function of the distance difference between

reflectors with respect to the antenna. Shown in (a) are results from measurements and in (b)

from simulated data taken from Figure 4.
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were performed, and the results were viewed in a statistical manner. Con-
sequences of incorrectly estimated model orders used in the evaluation pro-
cess were pointed out and the model order estimation problem was treated
by an adaptive model order selection procedure yielding reliable estimates
with measured radar sensor data. Measurements with a fixed and a moving
target were carried out to confirm simulation results. The results correspond
very well to those of the simulations and confirm the improvement in re-
solution and accuracy with model-based frequency estimation algorithms
as compared to the FFT. These advantages must be paid for with higher
computational cost and an extra task for the determination of the model
order in general applications. Progress in digital signal processing hard-
ware makes this approach very promising for radar sensors in industrial
applications such as distance sensors in the steel industry or for liquid level
sensors [17].

References

1. Cooley, J.W. and Tukey, J.W., 1965, An algorithm for the machine computation of the

complex fourier series: Mathematics of Computation, v. 19, no. 4, p. 297–301.

2. Pichler, M., Stelzer, A., Kolmhofer, E., and Weigel, R., 2001, Velocity estimation from

Doppler radar measurements: Proc. of Int. Symp. Theoret. Elec. Eng., ISTET-2001, Linz,

Austria, v. 2, p. 369–374.

3. Stelzer, A., Pichler, M., andWeigel, R., 2002, High resolution algorithms applied to velocity

and length-of-travel measurements in radar sensors: Proc. of Asia Pacific Microwave Conf.,

APMC-2002, Kyoto, Japan, v. 1, p. 245–248.

4. Proakis, J.G. and Manolakis, D.G., 1996, Digital signal processing: Principles, algorithms,

and applications, 3rd ed., Prentice Hall, Upper Saddle River, NJ, USA.

5. Kay, S.M., 1988, Modern spectral estimation: Theory and application, Prentice Hall,

Englewood Cliffs, NJ, USA.

6. Rao, B.D. and Arun, K.S., 1992, Model based processing of signals: A state space approach:

Proc. of IEEE, v. 80, no. 2, p. 283–309.

7. Fuchs, J.J., 1988, Estimating the number of sinusoids in additive white noise: IEEE Trans.

on Acoustics, Speech and Signal Processing, v. 36, no. 12, p. 1846–1853.

8. Tufts, D.W. and Kumaresan, R., 1982, Estimation of frequencies of multiple sinusoids:

Making linear prediction perform like maximum likelihood: Proc. of IEEE, v. 70, no. 9,

p. 975–989.

9. Rao, B.D. and Hari, K.V.S., 1989, Performance analysis of Root-Music: IEEE Trans. on

Acoustics, Speech and Signal Processing, v. 37, no. 12, p. 1939–1949.

10. Stoica, P. and Nehorai, A., 1989, MUSIC, maximum likelihood, and Cramer–Rao bound:

IEEE Trans. on Acoustics, Speech and Signal Processing, v. 37, no. 5, p. 720–741.

11. Yuan Hwang, C. and Chao Hung, C., 1992, An alternative algorithm based on subspace

rotation invariance techniques for directions-of-arrival estimation using the compressed

data pencil: J. Acoustical Soc. of Am., v. 92, no. 4, pt. 1, p. 1962–1965.

12. Gulden, P., Vossiek, M., Storck, E., and Heide, P., 2001, Application of state space fre-

quency estimation techniques to radar systems: Proc. of 2001 IEEE Int. Conf. Acoustics,

Speech, and Signal Processing, Salt Lake City, UT, USA, v. 5, p. 2870–2880.

260 Stelzer and Pichler



13. Pichler, M., Stelzer, A., Schuster, S., Scheiblhofer, S., and Hauser, R., 2003, High resolution

evaluation algorithms for SAW-identification tags: Proc. of Modeling, Signal Processing,

and Control Conf. at SPIE’s 10th Smart Structures and Materials Symp., San Diego, CA,

USA, (in print).

14. Akaike, H., 1971, Information theory and an extension of the maximum likelihood princi-

ple, Proc. of 2nd Int. Symp. Inform. Theory—Abs. of Papers, Tsahkadsor, Armenia, USSR,

p. 276–281.

15. Wax, M. and Kailath, T., 1985, Detection of signals by information theoretic criteria: IEEE

Trans. on Acoustics, Speech and Signal Processing, v. ASSP-33, no. 2, p. 387–392.

16. Zhao, L.C., Krishnaiah, P.R., and Bai, Z.D., 1987, Remarks on certain criteria for detection

of number of signals: IEEE Trans. on Acoustics, Speech and Signal Processing, v. ASSP-35,

no. 2, p. 129–132.

17. Pichler, M., Gulden, P., Vossiek, M., and Stelzer, A., 2003, A 24-GHz tank level gauging

system with state-space frequency estimation and a novel adaptive model order selection

algorithm: Proc. of 2003 IEEE MTT-S Int. Microwave Symp., Philadelphia, PA, USA.

Model-Based Frequency Estimation Algorithms in Radar Signal Processing 261



Enhanced Auditory Displays for Discriminating

Landmines from Clutter Using Electromagnetic

Induction Sensors

Yingyi Tan, Lisa G. Huettel, Stacy L. Tantum, and Leslie M. Collins*

Department of Electrical and Computer Engineering, Box 90291,
Duke University, Durham, NC, USA

Received June 13, 2002; revised February 18, 2003

Landmine detection is primarily performed using electromagnetic induction (EMI) sensors.

These sensors detect the presence of metal and convey the information to the sensor operators

via an audio signal. Reduction of false alarms from objects that contain metal but are not land-

mines, i.e. discrimination, is a challenging problem. Recent work on automated algorithms has

shown promise towards reducing false alarm rates of EMI sensors. In this study, the audio

signal was modified to encode the presence of metal as well as information regarding mine=

non-mine belief in order to determine whether the additional information enabled operators to

better discriminate mines from clutter. Using data collected from real landmines, we experi-

mentally investigated which perceptual dimensions most effectively convey different aspects of

the information contained in the sensor response to a listener. Results indicated that the pres-

ence of metal (detection) could be coded in the fundamental frequency of the audio signal, and

that mine=non-mine belief (discrimination), determined using an automated algorithm, could

be coded in a separate audio dimension. Operators performed better with this audio coding

scheme than one where only metal content information was presented via the fundamental

frequency of the audio signal.

Key Words. Auditory display, Bayesian signal processing, landmine detection, discrimination,

electromagnetic induction.

1. Introduction

Landmines are a form of unexploded ordnance, usually emplaced on
or just under the ground. They are designed to explode in the presence
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of a triggering stimulus such as pressure from a foot or a vehicle. Generally,
landmines are divided into two categories: antipersonnel mines and anti-
tank mines. Antipersonnel (AP) landmines are typically devices designed to
be triggered by a relatively small amount of pressure, typically 40 lbs. AP
mines contain a small amount of explosive so that the explosion of the
landmine maims or kills the person who triggers the device. In contrast,
antitank (AT) mines are specifically designed for the destruction of tanks and
vehicles. Pressure-activated AT mines explode only if compressed by an
object weighing hundreds of pounds. AP mines are generally small (less than
10 cm in diameter), and are usually more difficult to detect than the larger
AT mines.

According to several sources (including the United Nations, the U.S.
State Department, the Red Cross, and various humanitarian agencies), it is
estimated that there are over 100 million landmines buried across 70 coun-
tries, with an estimated 2 million more emplaced each year. Fewer than
100,000 landmines are reportedly cleared each year, and estimates indicate
that landmines kill or maim at least 26,000 people annually. Most victims are
innocent civilians, many of whom are children. Once laid, mines can maim or
kill for decades after all hostilities have ceased. For this reason, the anti-
personnel landmine has been referred to as a ‘‘weapon of mass destruction in
slow motion’’ [1].

Mine detection technologies and systems that are in use or have been
proposed for use include electromagnetic induction (EMI), ground pene-
trating radar (GPR), infrared imaging (IR), and quadrupole resonance
(QR). Regardless of the technology applied to the problem, the goal is to
achieve a high probability of detection (Pd) while maintaining a low prob-
ability of false alarm (Pfa). This is of particular importance for the landmine
problem since the nearly perfect Pd that is necessary to comply with safety
requirements comes at the expense of a high Pfa, and the time and cost re-
quired to remediate contaminated areas are directly proportional to Pfa. In
areas such as a former battlefield, the average ratio of real mines to suspect
objects is 1:100, thus the process of clearing the area proceeds very slowly.

Among the technologies available for landmine detection, the most
well-established is the EMI sensor, or metal detector. EMI sensors transmit a
primary electromagnetic field that induces currents in any metallic or con-
ducting object in the surrounding medium. These eddy currents in the metal-
lic object produce a secondary electromagnetic field that can be measured
by the sensor. The measured signal can be modeled as a weighted sum of
decaying exponential signals in the time domain, or as a weighted sum of the
Fourier transform of decaying exponential signals in the frequency domain
[2–12]. Since the decay rates are inherent properties of a particular object and
are not dependent on target=sensor orientation [12], decay rate estimation
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has been proposed as a robust approach to the problem of discriminating
landmines from clutter [2–7]. This approach can be applied to both time and
frequency domain EMI data.

Recently, substantial research efforts have been focused on optimiz-
ing the signal processing performed by the analysis portion of the landmine
detection system. Previous work directed toward developing algorithms
for both time- and frequency-domain EMI systems has shown that the
false alarm rate can be reduced dramatically by improving the signal pro-
cessing [2–15]. It has also been established that the human operator, usually
a soldier in military demining scenarios, is a key component in the over-
all mine detection system. Recent research on the effects of training [16–17]
has shown that operator training can have a substantial impact on per-
formance, with well-trained operators dramatically outperforming poorly
trained or untrained operators. This result holds both for single sensor sys-
tems and for multi-sensor suites. Unfortunately, most operators are not
adequately trained on the currently deployed technology, although this is
slowly changing.

In currently deployed systems, human operators (both soldiers and
civilians) are often plagued by extremely high false alarm rates as a result of
the extensive amount of metallic clutter in the environment. In addition to a
lack of training, inadequate or incomplete presentation of the sensor infor-
mation to the operator may also cause poor performance. Not only is a very
limited amount of the information in the sensor response provided to the
operator, but the manner in which the information is presented, the audio
signal coding, may not fully utilize the operator’s auditory processing abili-
ties. Unluckily, it is difficult to assess the relative contributions of the sensor
and the sensor operator in a field scenario. Thus, theoretical and experimental
studies of algorithm performance on data collected in field exercises are
often undertaken to allow potential improvements due to signal processing to
be assessed independently of the sensor operator. Independent studies that
assess performance of the combined system (hardware, algorithm and oper-
ator) in the field are routinely performed as part of government-sponsored
prove outs.

The literature regarding the design of alarm or auditory warning sig-
nals suggests that pulsed signals consisting of harmonic complexes effectively
convey information [18–20]. This literature also reports that information is
most efficiently transmitted via frequency as opposed to amplitude cues, and
that urgency can be effectively transmitted in audio signals via changes in
pulse rate. This literature has not been exploited when designing alarm sig-
nals for landmine detection systems, and proposed changes based on this
literature have not been tested in human subjects [20]. Rather, the current
practice is to reduce the system response to a single value, or metric, based
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only on the strength of the signal, and to convey this metric through an
increase in the frequency of a narrow band, continuous signal. The metrics
currently used in fielded time domain EMI systems consist of a single time
sample of the signal, a sum of the signal over a particular time window, or
the energy in the signal. Each of these metrics increases as the amount of
metal present increases, and decreases as the distance between the detector
and the object increases. By themselves, these metrics do little to discriminate
between metallic clutter items and landmines.

The goal of the current study was to combine an investigation of the
performance of signal processing algorithms for improved false alarm rate
performance with an investigation of the performance of a human listener
when multiple lines of information are being presented. Specifically, we in-
vestigate methods by which such EMI signal processing algorithms could
be integrated with audio signal generation techniques in order to better uti-
lize the audio processing capabilities of the human operator. We present the
results of a study that investigates the perceptual dimensions that were the
most effective in transmitting the information contained in an EMI signal
to naı̈ve, or un-trained, listeners. We were specifically interested in whether
information regarding metal content could be conveyed in one audio di-
mension while landmine confidence could be simultaneously conveyed in a
second audio dimension. Current approaches convey only information re-
gardingmetal content, as modified by distance, in a single-dimensional signal.
Specifically, such current approaches are limited to the detection problem, in
which the presence of metal is determined using the EMI system. We are
interested in pursuing the discrimination problem, where landmines are dif-
ferentiated from other metal objects. Our goal is to provide information
regarding both the detection and discrimination problem to the operator and
determine whether they can use such information effectively. We also investi-
gated the degree to which improvements in performance measured for auto-
mated signal processing algorithms could be translated into improvements in
performance for an operator. A set of data collected with a deployed EMI
sensor over real landmines buried at a government test site was used to
analyze performance improvements.

2. EMI Sensor Model and Field Data

Most currently deployed EMI sensors are operated in the time do-
main. The frequency content of the transmitted pulse is usually fairly low
(<1 MHz), a regime in which conductivity- and permeability-dependent skin
depth of the materials varies significantly [3,21–24]. Also, the displacement
current component of the response to the near field loop-induced fields is
weak enough to be neglected [21–24]. It has been shown [3,5,21,24] that the
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response, r(t), measured by a pulsed EMI system from a general conducting,
permeable target can be modeled as a superposition of weighted, resonant
responses:

r(t) =
Xn

i=1

Aie
jw i t

where wi is the ith natural resonant frequency of the object and Ai is the
initial magnitude of the response corresponding to the i th frequency. In
practice, the real part of wi is very small and can be neglected [21,24]. Thus,
the response measured by a pulsed EMI system can be accurately modeled as
a weighted sum of exponential modes:

r(t) =
Xn

i=1

Aie
–a i t

The magnitudes of the excited modes, Ai, depend strongly on the excitation
level, depth, and orientation of the subsurface object. The decay rates, ai, are
a function of object size, shape, conductivity and permeability, which are
hopefully unique to each landmine type. While several studies have suggested
that the decay rates from each type of landmine form distinct sets [2–5], there
is no evidence that clutter will not share the same decay rates space as land-
mines. Previous discrimination work has suggested that while overlap be-
tween the sets of decay rates occurs between mines and metallic clutter, the
overlap is not complete [2–15]. The number of decay rates that can be ac-
curately estimated from a measured signal depends on the signal-to-noise
ratio (SNR) of the signal. This limit has been quantified for EMI sensors by
calculation of Cramer–Rao lower bounds [25,26].

There are two general classes of time-domain EMI sensors: single
channel, also called integrated time-domain systems, and multi-channel
time-domain systems. A single channel sensor, which constitutes the con-
ventional EMI sensor, performs an operation (either selection of a single
sample in time, calculation of the sum over a set of samples, or calculation of
the energy) on the measured time-domain response over a predetermined
signal window to obtain a scalar value at each location interrogated by the
sensor. In contrast, a multi-channel sensor records a set of sampled values of
the response waveform at each interrogated location.

For this study, we utilized data collected with the standardArmy land-
mine detector, the PSS-12, which is manufactured by Schiebel Corporation.
In its fielded operation mode, which is designed to locate all subsurface
metallic anomalies, the internal circuitry of this EMI sensor controls the
transmit pulse and gates the received signal, which is sampled a preset amount
of time after the signal falls out of saturation. An estimated background
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signal is subtracted from this sampled value and this difference is compared
to a threshold set by the operator. The resulting signal is used to drive
a voltage-to-frequency converter to generate an audio tone. The operator
then interprets this tone to determine whether a metallic object is present
(detection). In order to collect higher-information content data with this
sensor, the PSS-12 has been modified so that the entire signal obtained at the
receive coil could be measured [27]. The measured response was captured
automatically from the receive coil via custom-designed software written in
LabVIEWTM. An example of the signal measured from a landmine using the
modified PSS-12 is shown with the solid line in Figure 1. The sensor output
is plotted as a function of time and the characteristic form of a decaying
exponential signal can be clearly observed.

The Joint UXO Coordination Office (JUXOCO), located at Fort
Belvoir, VA, has developed a Performance Baselining and Test Site designed
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Figure 1. Response from a landmine measured with the PSS-12 as a function of time (solid line)

and predicted signature showing a fit using one decay rate (dashed line) and two decay rates

(dotted line).
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to evalute the performance of handheld and vehicular landmine and un-
exploded ordnance (UXO) detection systems [28,29]. This site contains a
5 meter by 25 meter calibration area where both mines and anthropic clutter
have been emplaced in the center of 1 meter by 1 meter grid squares. Each of
the 125 grid squares has either nothing, a non-landmine object (clutter), or a
landmine buried at the center, thus allowing discrete opportunities for de-
tections and false alarms. All indigenous clutter has been removed from the
site. The mine targets that have been emplaced in the grid squares are pre-
dominately low-metal content landmines since these provide the greatest
challenge to currently fielded EMI sensors. Data were collected from the
modified PSS-12 sensor at the center of each grid square in the calibration
grid at the JUXOCO test site by researchers fromAuburn University. A com-
plete calibration lane data set was collected on three different days, resulting
in three data sets reflective of slightly different environmental conditions.
The collected signals were sampled at 20 MHz and saved to disk for further
analysis.

3. EMI Signal Processing and Performance Analysis

In physics-based statistical signal processing, a phenomenological
model describing the nature of the underlying signal is utilized within the
framework of statistical decision theory. Tying the signal processing to the
phenomenology, while continuing to acknowledge the statistical nature of
the decision problem, often results in substantial performance gains. For the
time domain EMI-based landmine scenario, the phenomenological model
predicts that the signal measured at the receive coil is a weighted sum of
decaying exponential signals. Since the decay rates are defining character-
istics of the signal, a physics-based approach suggests extracting the decay
rates and using them within the context of a statistical processor to make a
mine=no-mine decision. Previous work has indicated that processing the
entire signal, as opposed to processing the decay rates, provides better per-
formance [7], however such algorithms can often not be implemented in real
time. Because of the nature of the landmine problem, only real-time pro-
cessing was considered to be viable in this study. Numerous techniques have
been proposed previously for decay rate estimation. A novel method, non-
linear least squares estimation of the signal poles, provides better overall
performance than other frequently used methods, such as nonlinear least
squares estimation of the decay rates [25,30]. Instead of estimating the signal
decay rates directly, nonlinear least squares estimation of the signal poles re-
parameterizes the underlying signal so that a function of the decay rates is
first estimated, and then the decay rates are calculated from the intermediate
estimates. Assuming for a moment that a single exponential is present, the
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response of the EMI sensor may be written as

x(t) =Apt=T0

where p = e–aT0 is referred to as a signal pole; and T0 is used to scale the poles
in order to avoid numerical artifacts [30]. To minimize the error function, the
sum of the squared differences between the modeled signal x(t) and the data
r(t) measured by the EMI sensor, e =

P
(x (t) – r(t))2 is used to estimate the

pole p̂. The signal decay rate is obtained by

â =
– ln( p̂)

T0

If the recorded signal consists of a weighted sum of multiple decay rates a
similar approach can be utilized. Amplitudes associated with each of the
decay rates are also estimated simultaneously using this method.

Numerical gradient searches were implemented to find the estimate of
the pole. Ten sets of initial values for the amplitudes and the poles were used
in order to overcome a limitation of numerical gradient searches: they are
not guaranteed to find the global minimum of the error function. The decay
rate that results in the minimum error between the estimated signal and the
measured signal is then chosen as the estimate.

The signal-to-noise ratio present in the PSS-12 data allows a maxi-
mum of two decay rates to be reliably estimated [27]. We developed two
processors, one that utilized a single estimated decay rate and one that uti-
lized two estimated decay rates. Although the second of the two processors
provides a more accurate fit to the experimental data, the first requires less
computation time to perform the decay rate estimation. Figure 1 shows a
comparison between the signal measured from a mine with the PSS-12 sensor
and the signal generated using a fit from a single estimated decay rate
(dashed line) and a fit using two estimated decay rates (dotted line). Clearly,
in this case, the measured signal is better predicted when two decaying
exponential functions are used to model the measured signal.

The statistical processor using a single decay rate is formed using the
likelihood ratio test [31] and the test statistic, L, is given by

L(â)=
p(â=H1)

p(â=H0)

where p denotes probability density function (pdf), â is a single estimated
decay rate, and H1 and H0 are the mine and clutter (or no-mine) hypotheses
respectively. It is important to note that this formulation is for the dis-
crimination, as opposed to simply detection, problem since H0 includes both
metallic clutter and bare ground. We will refer to this processor as the 1DR
processor. The pdfs that describe the decay rates under each hypothesis were
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not known a priori and were estimated from the observations of the esti-
mated decay rates from the measured real data. The estimated pdfs do not
obey any commonly used unimodal pdf, thus the equation for the pdf that
was adopted utilized a 20th degree polynomial fit to the measured distribu-
tions. Although the pdf derived using a polynomial fitting method provides a
good fit to the data, we were concerned that it might be less robust than a
mixed Gaussian pdf that superimposes several weighted-Gaussian pdfs, each
with different means and covariance functions. However, the performance
achieved using the two different pdf models was similar.

In the data, there were several cases where a single decaying ex-
ponential did not provide a good fit to the measured data, as illustrated in
Figure 1. The decay rate processor was subsequently modified to process two
estimated decay rates

L(â1, â2) =
p(â1, â2=H1)

p(â1, â2=H0)

and this processor is denoted the 2DR processor. This processor is also
designed for the discrimination problem.

The two decay rates extracted based on the algorithm described pre-
viously are not independent, thus the joint pdf must be estimated. Figure 2
illustrates the relationship between the two decay rates estimated from the
PSS-12 data set collected at the JUXOCO site. Each symbol is associated
with a particular decay rate pair that was estimated from the data set. As
illustrated in Figure 2, the decay-rate pairs are not randomly scattered over
the entire space; they are divided amongst several clusters, each with its own
correlation structure. Assuming that each cluster follows a two-dimensional
Gaussian distribution, then a Gaussian mixture model can be employed, i.e.,

p(â1, â2) =
Xn

i=1

wipi(â1, â2)

where the ith pdf, pi, is a Gaussian pdf: N(m1, m2, s2
1, s2

2, r) and wi is the
weighting coefficient associated with the ith cluster. The means, variances,
and correlation coefficient can be estimated for each cluster from the data.
The weights are defined as the proportion of mines in each cluster relative to
the total number of data points.

One important issue in determining the pdfs under each hypothesis is
finding a robust means by which to group the data into the clusters that
define the parameters of the individual Gaussian pdfs. A simple approach is
to simply group, or cluster, the decay rates manually. In this brute force
approach, the number of clusters is determined by visually inspecting a
scatter plot of the decay rates. Each pair of decay rates is then assigned to
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one of the clusters. Once the clusters have been defined, the mean and co-
variance function that defines the Gaussian pdf can be estimated from the
data forming each cluster. Although this approach to clustering is valid, it is
time consuming, thus automated approaches were also considered.

In fuzzy logic research, fuzzy c-means (FCM) is a data clustering tech-
nique wherein each data point belongs to a cluster to a degree that is specified
by a membership grade [32]. The FCM method is initialized with a pre-
liminary, usually incorrect, guess for the cluster centers, which are intended
to correspond to the mean location of each cluster. Based on the initial es-
timates of the cluster centers, FCM assigns every data point a membership
grade for each cluster. By iteratively updating the cluster centers and the
membership grades for each data point, FCM moves the cluster centers to
the ‘‘correct’’ location within a data set. This iteration is based on minimiz-
ing an objective function that represents the distance from any given data
point to a cluster center weighted by that data point’s membership grade.

Since an unknown number of clusters are present in the data set,
several potential cluster numbers were considered in order to determine
the optimum number of clusters. The receiver operating characteristic, or
ROC, curves for different cluster numbers were evaluated. Performance,
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as measured by the ROCs, improved as the number of clusters was increased
to n = 6; however, adding additional clusters beyond 6 did not improve
performance. Thus, six clusters were used in the pdfs describing both the
mine and clutter hypotheses.

The contours that resulted from the automatic FCM clustering re-
sembled a circle more than an ellipsoid, indicating that the FCM grouping
method may have tended to underestimate correlation between the two de-
cay rates in each cluster. Because of the absence of the correlation structure,
the clustering results obtained with the FCM grouping method were quite
different from those obtained using the brute-force grouping (see Fig. 2).
This difference was also reflected in the ROC curves, as shown in Figure 3,
which show the performance measured for each clustering scheme. The
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statistical algorithm using the brute-force clustering slightly out-performed
the algorithm using the FCM clustering. This indicates that the correlation
structure that exists in the data can be utilized to improve performance.
Since the FCM grouping resulted in slightly poorer performance than a
brute-force grouping when the number of clusters was identical across each
method, the brute-force grouping was used in all subsequent analyses.

To determine whether the decay rate processors, whose goal is dis-
crimination, outperform the more traditional energy detectors, whose goal
is solely detection, ROC curves were calculated for each of the three pro-
cessors. In the calibration area, there are 21 mines, 20 clutter objects, and
59 blank squares. ROC curves are typically plotted as the probability of
detection as a function of the probability of false alarm, and thus are plotted
as such here. However, since H0 consists of the metallic clutter and blanks
and H1 consists of mines only, the ROC curves are truly plotting probability
of discrimination versus probability of false alarm.

The results shown in Figure 4 indicate that the performance of both
the 1DR and 2DR processors are better than that of the energy processor,
although the improvement in performance is not dramatic. This particular
data collection site is focused on discrimination of low-metal mines from
competing clutter, signals for which the PSS-12 was not optimally designed,
thus the rather modest gains in performance shown in Figure 4 are not sur-
prising. The 2DR processor does not provide substantially better perfor-
mance than the 1DR processor, mainly improving the performance over the
1DR processor in the high probability of detection case. However, since the
high probability of detection region of the ROC is where most human op-
erators attempt to maintain their performance, especially for this application,
it is possible that performance gains could be observed by using a 2DR
processor if it is used to provide an audio signal to an operator. Although
the performance of all three detectors converges at the point where the de-
tection and false alarm probabilities are both 1, it is still possible to make
relative performance comparisons above where the detection probability
is approximately 90%. In this case, a 20% decrease in false alarm percentage
corresponds to correctly rejecting approximately 4 clutter items.

4. Auditory Display Design and Testing

The results presented in the previous section provide a theoretical
argument indicating that alternative signal processing algorithms could re-
duce the number of false alarms due to metallic clutter that are obtained
using simple signal strength metrics. It is important to determine whether
this advantage can be translated intomeasurable changes in performance that
can be achieved by an operator. In current operational landmine detection,
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the ultimate decision of whether the target is a mine or clutter object relies on
operators who sweep the field using hand-held EMI sensors, making deci-
sions based on the processed audio signal that they hear. The audio signal
is generated from a signal strength calculation, where the signal strength
is proportional to the amount of metal that is detected and inversely pro-
portional to the distance between the sensor and the object. A commonly
used measure for the signal strength is the signal energy, and some parameter
of the audio signal, usually frequency or amplitude, is modulated based on
this signal strength.

The most commonly used method for generating an alarm sound for
landmine detection systems is to change the frequency of the sound that
is presented to the operator. The pitch or frequency of the audio signal is
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determined by either the total energy or a single sample of the recorded
signal in EMI systems. High-pitched sounds, corresponding to high-energy
signals, indicate that high metallic content material is present in the en-
vironment. Based on the audio signal, it is possible for an operator to de-
termine that an object is present when a high frequency alarm sound is heard.
This audio coding scheme is based on the assumption that a signal from a
mine has more energy than a signal from non-mine objects or the ground.
However, some clutter objects are highly metallic and are, therefore, encoded
as a high frequency sound, thus giving rise to the false alarm problem. Be-
cause operators want to be alerted to the presence of any object, be it a mine
or not, any new audio alarm signal must still indicate that metal is present in
the immediate environment. However the presence of metal alone does not
indicate the presence of a mine. The hypothesis of this study is that coding
additional information in the audio signal that reflects mine characteristics
could potentially decrease the false alarm rate and improve discrimination.

This strategy could also potentially improve the discrimination of
low-metal content mines that result in low energy signals in the detector, but
have decay rates consistent with that of a mine. (It is important to note here
that this assumes that all of the signals from metal objects are detectable by
the sensor. Since the ROCs do not achieve detection probabilities of 1 until
the false alarm probability is 1, this assumption is not true for this data set,
for the reasons mentioned previously. However, we can still consider the dis-
crimination performance improvements at detection probabilities slightly
less than 1.) As described previously, the decay rates are an invariant feature
of the signal recorded from time domain EMI sensors and are an inherent
characteristic of mines. If the output of a decay rate processor drives one
parameter of the alarm sound, such as loudness or repetition rate, while more
traditional algorithms drive frequency content, discrimination performance
may improve. To address this issue, two listening experiments were designed
and conducted.

4.1. Experiment 1—Familiarization with the Baseline System

The goal of the first experiment was to familiarize listeners with the
presentation methodology associated with the traditional signal processing
performed by EMI systems. Effectively, this simulates the training process
that soldiers undergo while training to use a standard metal detector. Based
on the work of others [18,19], the basic alarm that was used consisted of an
11 component harmonic complex with an adjustable fundamental frequency,
a duration of 500 ms, and an amplitude of 63 dB. The amplitude of the nth
harmonic component was 1=n that of the fundamental. The energy in the sig-
nal from the metal detector was mapped to one of a set of seven fundamental
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frequencies: 210, 250, 280, 320, 440, 500, and 680 Hz. The energy distribu-
tion was discretized into seven equal-area sections and mapped to the seven
fundamental frequencies. A 50 ms raised cosine window was used for the
onset and offset of the signal. All stimuli were loudness balanced prior to
presentation. Loudness balancing was necessary since sounds with different
frequencies and the same amplitude have different perceived loudness levels,
and it was important to remove overall loudness as a cue for the task in order
to independently analyze the effects of each cue of interest in the subsequent
experiment.

One male and four female subjects who were 25–28 years old partic-
ipated in the experiments. Some subjects had participated in previous hear-
ing experiments, but none had been tested on experiments similar to the ones
performed in this study. Subjects performed the experiments while seated in
a soundproof booth. They first performed the training experiments 5 times,
and 60 trials were presented in each experiment. In each trial, a signal was
selected randomly from the data set collected at the JUXOCO site. The en-
ergy of this signal was calculated and mapped through the previously defined
nonlinear relationship to one of the seven fundamental frequencies. The
harmonic signal corresponding to this frequency was then played through
headphones in a one-interval forced-choice paradigm. (High quality head-
phones were not used specifically to simulate the types of headphones used
by typical EMI system operators.) The probability that the signal was from a
mine in each trial was 0.5. Although subjects were told that higher frequency
sounds were more likely to represent mines, no criterion was set for the sub-
jects, and feedback was not provided on a trial-to-trial basis. A reward=
penalty scheme was utilized to aid subjects in setting a criterion that opti-
mized their performance. After completion of each of the five training experi-
ments, subjects were given a score as feedback. This mechanism reinforced
the criterion that higher frequency signals were indicative of the presence of a
landmine. Only five sets of sixty trials were used in this experiment to avoid
over-training of the criteria, and to simulate the limited training usually
provided to EMI system operators.

4.2. Experiment 2—Investigation of the Stimulus Dimensions in which to
Provide Additional Information

The second set of experiments investigated whether additional in-
formation regarding the probability that a landmine was present could be
conveyed to listeners through a separate stimulus dimension in order to
improve discrimination performance. Two of the dimensions proposed for
general alarm sounds that were suggested by Hellier et al. [19], loudness
and pulse rate, were investigated. As preliminary steps, the decay rates were
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extracted from the data measured by the PSS-12 system and the total energy
of the signal was calculated. The decay rates were processed by the 1DR and
2DR algorithms and then used to drive either the loudness or the pulse rate
of the stimulus. At the same time, the energy in the signal was used as in the
training experiment to drive the fundamental frequency of the harmonic
complex.

In these experiments, three approaches to information coding were
tested:

(1) Energy drives the fundamental frequency. The stimuli were the
same as those that were used in the training experiments, and the
results provided a baseline to which the discrimination perfor-
mance achieved with the other information coding methodologies
could be compared.

(2) Energy drives the fundamental frequency and the output of one
of the two DR processors drives loudness. The baseline loudness
of each alarm sound was the same as that in the training experi-
ment. The loudness was varied across 7 different levels, and the
interval between each level was 3–4 dB, a difference that is dis-
criminable for human subjects.

(3) Energy drives the fundamental frequency and the output of one
of the twoDR processors drives the pulse rate. In this experiment,
each pulse consisted of a harmonic complex that was identical
to the basic alarm signal used in the training experiment with the
exception that the duration of each complex was decreased to
200 ms. The duration of the pulse-train complex was approxi-
mately 2500 ms, and the number of pulses in the entire complex
was one of 7 different levels. The parameters for this experiment
are shown in Table 1.

In summary, there were five experiments performed to determine whether
additional information could be coded in the audio signal and used by the

Table 1. Parameters Associated with the Stimuli with Modulated Pulse Rates

Level Number of pulses Interpulse interval (ms) Duration (ms)

1 4 477.5 2232

2 5 302.0 2208

3 6 237.8 2389

4 8 117.7 2423

5 9 59.6 2536

6 10 50.0 2450

7 12 9.6 2504
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subjects to improve their performance on the discrimination task. The base-
line detection experiment was equivalent to the training experiment in which
the energy in the signal drove the fundamental frequency of a harmonic com-
plex. In the remaining four experiments, energy continued to drive the fun-
damental frequency. In addition, the 1DR or 2DR processor output drove
either the loudness or the pulse rate of the audio signal that was presented
to the subject. Each experiment was performed 5 times by each listener, with
60 trials presented in each experiment. Experiments were performed in ran-
dom order. Subjects were informed that the baseline experiment was the
same as the training system, and that the information being conveyed in the
new dimension was provided as a measure of the confidence that a landmine
was present. They were told that ‘‘louder’’ and ‘‘faster’’ for the loudness and
pulse rate experiments, respectively, corresponded to ‘‘more mine like’’.

The performance achieved by each subject in each one-interval forced
choice experiment was calculated using a standard d¢ summary statistic. To
calculate these d¢ values, an ROC for the binary detection problem is gen-
erated assuming that the decision statistic under H1 follows a Gaussian
probability density function with mean m1 and variance s 2 and that the
decision statistic under H0 follows a Gaussian probability density function
with mean m0 and variance s 2. Using the results of each experiment, a
probability of detection and probability of false alarm were calculated. Then,
the ROC for the binary detection problem with a difference in the means,
m1–m0, and variance s 2 was posed, and a mean difference and variance were
found such that the assumed ROC intersected the experimental probabilities.
The d¢ was then calculated using (m1 –m0=s ).

The d¢ values across the five repeated runs of the experiment were
averaged to obtain a final score for each experimental condition. The average
d¢ value for each experiment is plotted as a function of subject number in
Figure 5. Performance for each experiment is shown with the same symbol
for each subject and lines connect the symbols in order to assist in the in-
terpretation of the results. Several conclusions can be drawn from the ex-
perimental results shown in Figure 5. Generally, using the 1DR or 2DR
processor output to drive any parameter of the audio signal in addition to
having the energy drive the fundamental frequency improves the discrimi-
nation performance. The theoretical results provided in the previous section
predicted such a trend. We may therefore hypothesize that utilizing energy
and decay rate processors to generate an audio signal may improve dis-
crimination performance because additional statistical information from the
signal is used.

Of the two acoustic parameters employed, modulating the pulse
rate appears to improve discrimination performance more than does the
modulation of loudness. In an acoustic sense, changes in pulse rate alter the
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character of the stimulus and may be more discriminable than changes
in loudness that only alter the quality of the signal. The results shown in
Figure 5 also indicate that training may be an issue since the results obtained
by subject 4 are substantially better than the results obtained by any of the
other subjects. It is possible that subject 4 understood the task and=or the
instructions better than the other subjects, and thus performed better, and
that additional training or more detailed explanations and instructions could
help improve the scores of the other subjects. Future work will investigate
the effect of training more carefully. However, in this study we were specifi-
cally interested in whether untrained subjects (like untrained soldiers) could
obtain any benefit from the additional information provided by the decay
rate processor. The results in Figure 5 clearly indicate that subjects can use
additional information when it is provided.

The left panel of Figure 6 illustrates the ROCs that would be obtained
using the mean d¢ across subjects for each experiment and assuming that the
underlying perceptual variables (which are unknown) follow a Gaussian
distribution. Again, the results indicate that the addition of any information
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beyond simple energy will improve average discrimination performance over
baseline detection performance. The right panel of Figure 6 illustrates the
ROCs that would be obtained using the d¢ measured for the best subject’s
performance and the same Gaussian assumption. These results can be com-
pared to those shown in Figure 4, which provide the theoretical performance
bounds for this experiment. These results provide an upper bound since the
automated algorithms were trained and tested on the same data set. Although
the best subject does not achieve the bound, these results were obtained
without training. It is possible that with training, subjects could approach the
performance bound.

5. Discussion

In applications such as humanitarian demining, EMI sensors are
often used to locate every metallic object in the area to be cleared. Some of
the metallic anomalies that are detected will be landmines, while others will
be clutter. We, along with others, have shown that advanced signal proces-
sing algorithms can be used to discriminate landmines from clutter using
EMI data. In these algorithms, signals from ‘‘clutter’’ often result in a low
level output from the algorithm while signals from landmines result in a high
level output. In military and humanitarian demining scenarios, the operator
should be provided with both the knowledge that a metallic object is present,
even when that object is not a landmine, and an indication of whether a
particular object is a landmine or a clutter object.
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The results of this study indicate that by using the energy in the
measured signal to drive the frequency of an audio alarm signal and using the
output of a more advanced algorithm to drive other parameters of the audio
signal, an operator can be provided with both pieces of information in an
interpretable format. Such an alarm system design approach in which addi-
tional information beyond metal content is extracted and provided to the
user has not been tested previously in this application area. Using this ap-
proach, untrained subjects improve their ability to discriminate mines from
clutter, for real landmine data collected in the field. Our results are consistent
with those in the literature for other applications [18,19] in that they indicate
that changing the pulse rate of an alarm signal provides better perception of
urgency than changes in loudness, and thus better discrimination of signals
of interest from those that are not of interest. However, the information that
metal has been detected persists in the presentation that we have proposed.
Our results also indicate fairly dramatic inter-subject differences in overall
level of discrimination, suggesting that training may be an issue.
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