Alternatives to ³He Detectors for Neutron Scattering Instruments

Ron Cooper

ORNL

6 April, 2010

AAAS Workshop Breakout Session

Managed by UT-Battelle for the Department of Energy

³He Arrays

- Approximately 75% of the detectors for neutron scattering use ³He
- These detectors are efficient, stable, low noise, have excellent gamma discrimination, and good timing
- Unfortunately they are a thing of the past
- ARCS Instrument at SNS
- 920 LPSD tubes
- Just completed a series of experiments studying iron based superconductors

ARCS detectors In vacuum tank

Gas Detectors

Gas Proportional Counter

 $n+{}^{3}He \rightarrow {}^{3}H+{}^{1}H+0.76MeV$

for the Department of Energy

Alternative Isotopes

- Neutrons interact via the strong force and isotopes with high neutron capture cross sections are required for efficient detection systems
- The daughter products from the captures must include energetic charged particles that will generate detectable signals
- Neutrons of a broad energy range are used and cross sections should be well behaved with respect to energy
- Isotopes should be plentiful
- For neutron scattering instruments the kinetic energy of the neutron is too small for proton recoil

Neutron Converters

Isotope	State	Reaction	Cross Section (b)	Absorb. Length	Product Energies (keV)	Product Range
³Не	gas	³ He(n,p)t	5333	7.59 bar-cm	P:573, t:191	$R_p = 0.43$ bar-cm CF_4
⁶ Li	solid	⁶ Li(n,α)t	940	230µm	T:2727, α:2055	R _t = 130 μm
ΰВ	solid	[™] B(n,α) ⁷ Li	3836	19.9µm	α:1472, ⁷ Li:840	R _α = 3.14 μm
¹⁰ BF ₃	gas	[∞] B(n,α) ⁷ Li	3836	9.82 bar-cm	α:1472, ⁷ Li:840	R _α = 0.42 bar-cm
^{ræ} Gd	solid	™ Gd (n,γ)	49122	6.72µm	Ce:29-182 (86.5%)	Λ _@ =12.3 μm

25meV Neutron

Data from T. Wilpert, (HZB)

Cross Sections

6 Managed by UT-Battelle for the Department of Energy

Abundance Comparison

³He from tritium decay

- Lithium has an average abundance and approximately 5% is ⁶Li
- Boron has an average abundance and is about 20% ^DB

7 Managed by UT-Battelle for the Department of Energy

detector tank design review 012108.ppt

Requirements for Neutron Detection for Homeland Security – R. Kouzes

- Neutron alarms initiate separate standard operating procedure
- Neutron background from cosmic ray produced secondaries at a very low rate (1000 times smaller than gamma rays)
- Fast (~1 MeV) and slow neutron detection required with flat response
- Meet or exceed all ANSI N42.35/N42.38 requirements

- Absolute efficiency: ε_{ab} = 0.11% or 2.5 cps/ng of ²² Cf (at 2 m in a specified configuration)
- Minimum gamma ray discrimination (ϵ_{int}) of 10⁶ or better
- Ratio with gamma exposure of 10 mR/h: $0.9 < \epsilon_{aby} / \epsilon_{abs} < 1.1$

Requirements for Alternative Neutron Detection for Homeland Security

- Readily available commercially within <u>4 months</u>
- Physically fit in the volume currently occupied by the neutron detection assembly in existing RPM systems (11.4 cm x 30.5 cm x 218.4 cm)
- Thermal and fast neutron detection
- Rugged, reliable, and accurate
- Non-responsive to gamma rays
- Safe
- Inexpensive

Requirements for Neutron Scattering

Table 3. Instrument requirements									
Instrument	Number of pixels	Pixel area (cm ²)	Maximum neutron energy (eV)	Neutron capture efficiency %	Gamma efficiency	Time resolution (µs)	Peak pixel count rate (n.s ⁻¹)	Detector count rate (n.s ⁻¹)	Data transfer rate (Mb/s)
Powder Diffractometer	40,000	2.4	0.33	50	10 ⁻⁶	1	100	$3.5 imes 10^6$	28
Disordered Materials Diffractometer	150,000	0.25	50	20	10 ⁻⁶	1	300	$4.2 imes 10^7$	340
High-Pressure Diffractometer	100,000	0.02	0.5	50	10-7	1	$1 imes 10^4$	$3.0 imes 10^5$	2.4
Engineering Diffractometer	80,000	1.25	0.15	50	10-6	1	2×10^5	$2.4 imes 10^6$	20
Single-Crystal Diffractometer	5×10 ⁶	0.01	0.35	50	10 ⁻⁶	10	2×10^4	$3.0 imes 10^5$	2.4
SANS Diffractometer	40,000	0.25	0.08	50	10-7	10	1,500	$2.0 imes 10^7$	160
Liquids Reflectometer	40,000	0.01	0.02	50	10-7	10	1×10^6	$7.0 imes 10^7$	560
Magnetism Reflectometer	40,000	0.01	0.03	50	10 ⁻⁷	10	1×10^{6}	$9.0 imes 10^7$	720
Backscattering Spectrometer	4,500	1.3	0.01	50	10-6	1	1×10^4	$1.3 imes 10^5$	1
ARC Spectrometer	70,000	2.5	1.0	50	10-7	1	1 × 10 ⁶ (Bragg)	$5.0 imes 10^5$	4
CNC Spectrometer	15,000	6.3	0.05	50	10-7	4	1 × 10 ⁶ (Bragg)	$7.0 imes 10^{6}$	56
HRC Spectrometer	70,000	2.5	1.0	50	10-7	1	1 × 10 ⁶ (Bragg)	$4.0 imes 10^5$	3.2

E CAKE

10 Managed by UT-Ba for the Department of Energy

Alternative Detectors for Large Areas

Proportional counters

- Li lined (extremely difficult)
 - Lithium compounds are reactive
 - Relatively low cross section limits efficiency
 - Lithium ions can drift in an electric field (battery)
- B lined
 - Short range of products limits efficiency
- BF₃ gas
 - High bias voltage limits pressure
 - Corrosive
- Gd lined (can't meet requirements)
 - 80 keV mean electron energy causes poor gamma rejection

Alternative Detectors for Large Areas

Scintillation Detectors

- LiFZnS:Ag scintillator with fiber readout

- Slow scintillator > 10 μs
- Opacity of scintillator limits efficiency
- Anger cameras with Li glass (GS20)
 - Cost
 - Moderate gamma rejection
- B loaded scintillator
 - Low light levels
 - Can be thin
- Gd loaded scintillator (can't meet requirements)
 - Used in imaging
 - Insufficient light for single neutron imaging

Boron Lined Proportional Counters

- Commercially available from several vendors
- The detector has a thin layer of ¹⁰ B on the inside wall of the tube
- Due to the short range of the daughter products the layer thickness is limited to about 2µm
- Uses standard chamber gas such as P10

Centronics Tube

Boron Lined Proportional Counters

Detection efficiency for a thermal neutron from a 2µm thick layer is 2% at best
Multiple layers are needed to achieve acceptable efficiencies

• By using (x,y) readout schemes the capture can be located to a specific tube without requiring a preamp per tube.

•Space charge saturation is not an issue

•Multiple walls increase gamma sensitivity

•Lack of energy resolution peak may limit gamma discrimination

Proportional Technologies

X (cm)

14 Managed by UT-Battelle for the Department of Energy

Energy Resolution

- Detectors need good energy resolution and separation from gamma background to enable gamma discrimination
- Gammas generate a low energy background with an exponential tail
- ³He tubes have excellent gamma discrimination, on the order of 10⁻⁷
- Boron lined tubes have no peak separation
- BF3 tubes have better separation than helium

detector tank design review 012108.pp

Images from GE Reuter Stokes

Boron Lined Tube Gamma Discrimination

 Set bias at 900V to minimize gamma events

May not work for neutron scattering where both good position resolution and high rate performance is required

GE Reuter Stokes

Inclined Boron Detectors

- Counting gas transparent to neutrons
- 10B for absorbing neutrons, which produces:
- ${}^{10}B + {}^{0}n \rightarrow {}^{7}Li + {}^{4}He + 2.3 \text{ MeV}$

•The resulting ionization is multiplied by the Gas Electron Multiplier (GEM) and induces a signal on the pads

•Tile into an array as Venetian blinds or Multi-blades

BF3 Proportional Counters

- Q value is 2.3MeV (3x helium) so BF3 has excellent gamma rejection
- Cross section is 72% of helium
- High voltage bias increases rapidly with pressure
- Efficiency is limited by the pressure

Centronics Tubes

Comparison with ARCS ³He Tube

- Detectors are 1m long and 25mm diameter, 25meV neutron
- Values are from Centronics for BF3 and GE Reuter-Stokes for He

Detector	Pressure (Pa)	HV Bias (V)	Efficiency (cps/nv)
BF3	27k	1300	12
BF3	53k	1800	23
BF3	93k	2400	39
³ He ARCS	1,010k	1850	170

BF3 Detectors

- Depending wavelength range, reasonable efficiency could be achieved with 2 to 4 rows of tubes
- Need to address the corrosive nature of the gas

Shifting Scintillator Neutron Detector (SSND)

- LiFZnS:Ag scintillator
- Wavelength shifting fiber readout
- Can be clear fiber like ISIS
 design
- Area: 0.3 m²
- Pulse shape gamma discrimination
- 0.5 x 5 cm position resolution, needs to be adjusted
- 5 µs time resolution for thermal neutrons

- Count Rate goal: 10⁵ n/s
- Capture efficiency: 75% for thermal neutrons

Production Status

- ORNL has a contract with PartTec LLC. to partner on detector production
- 30 detectors are at SNS in various stages of production
- PartTec is willing to work with other labs to develop these detectors for other uses

8 Detector array in POWGEN Instrument at SNS

Detector Details

- After passing through a thin aluminum window the neutron is captured in the LiFZnS:Ag scintillator
- Some of the blue light from the scintillator is shifted to green and trapped in the wavelength shifting fiber
- This light is detected by photomultiplier tubes and the coincidence determines the location on the scintillator

SSND Optical Readout

Blue scintillation Light is shifted to Green and captured In the fibers

24 Managed by UT-Battelle for the Department of Energy

Position Encoding (ISIS Concept)

 $m \times {}^{2}C_{n}$ Coding

POWGEN3 & VULCAN Production Modules:

Active area 772 x 386 mm² (0.3m²) Pixels 5mm wide x 50mm tall 308 x 152 fibers 20 tubes encode in scattering plane 8 tubes define pixels out-of-plane

⁶LiF/ZnS:Ag scintillator Double-clad wavelength-shifting fibers Green-enhanced PMTs

Light Guide Approach

- View scintillator with segmented PMT
- Use a light guide to prevent crosstalk
- Prototype will have 2cm x 2cm pixels
- Use Hamamatsu H-8500, 64 anode tube

Light Guide Prototype components

- Four components:
- Scintillator
- Lens
- Guide
- PMT

International Collaboration

Preliminary Agenda

"Helium-Group" - Meeting, Helmholtz-Zentrum Berlin, January 11-12, 2010

Monday, January 11th

Kolloquiumsraum (LMC)

13:30 13:35	Welcome (5')	The second se	
13:35		Thomas Wilpert	
and the second	Introduction and status report (5')	Karl Zeitelhack	
resentatio	ons of development programmes at the facilities		
3:40	SNS / HFIR (10' + discussion)	Ron Cooper	
4:00	J-Parc (10' + discussion)	Kazuhiko Soyama	
4:20	ISIS (10' + discussion)	Nigel Rhodes	
4:40	JCNS (10' + discussion)	Günter Kemmerling	
5:00	PSI (10' + discussion)	Oleg Kiselev	
5:20	NIST (10' + discussion)	Nick Maliszewskyj	
5:40	Coffee break	2	
6:00	ESS (10' + discussion)	Axel Steuwer	
6:20	ILL (10' + discussion)	Bruno Guerard	
6:40	HZ Berlin (10' + discussion)	Thomas Wilpert	
7:00	FRM II (10' + discussion)	Karl Zeitelhack	
7:20	Dubna (10' + discussion)	Vladimir Kruglov	
7:40	BNC (10' + discussion)	Laszlo Rosta	
8:00	End of session		

Collaboration Continued

Preliminary Agenda

"Helium-Group" – Meeting, Helmholtz-Zentrum Berlin, January 11-12, 2010

Tuesday, January 12th

Kolloquiumsraum (LMC)

Time	Preliminary Title	Speaker	Chair
	Presentations of development programmes at the facilities (continued)	
09:00	Discussion on Presentations and search for joint activities		
10:30	Coffee break		1
10:40	Cont. discussion / working group sessions		
12:00	Lunch		
13:00	Discussion on the preparation of the proposal for a common R&D programme		
15:30	End of meeting		

	Meeting with I. Anderson, R. McGreevy, M. Arai					
16:00	Discussion on IP issues and how to organize common R&D programme					
17:00	End of session					
19:00	Dinner in Ristorante "Salina", Invitation by HZB					

29 Managed by UT-Battelle for the Department of Energy

1

Division of Labor

• Scintillator

- ISIS
- J-PARC
- Juelich
- ORNL
- BF3
 - Dubna
 - HZB
 - FRM2
- Straw tubes
 - ILL
 - ESS

Discussion

